Skip to content
Snippets Groups Projects
SdVolume.cpp 11.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Arduino SdFat Library
     * Copyright (C) 2009 by William Greiman
     *
     * This file is part of the Arduino SdFat Library
     *
     * This Library is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * This Library is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with the Arduino SdFat Library.  If not, see
     * <http://www.gnu.org/licenses/>.
     */
    
    #include "Marlin.h"
    
    #if ENABLED(SDSUPPORT)
    
    #include "SdVolume.h"
    
    //------------------------------------------------------------------------------
    
    #if !USE_MULTIPLE_CARDS
    
    uint32_t SdVolume::cacheBlockNumber_;  // current block number
    cache_t  SdVolume::cacheBuffer_;       // 512 byte cache for Sd2Card
    Sd2Card* SdVolume::sdCard_;            // pointer to SD card object
    bool     SdVolume::cacheDirty_;        // cacheFlush() will write block if true
    uint32_t SdVolume::cacheMirrorBlock_;  // mirror  block for second FAT
    #endif  // USE_MULTIPLE_CARDS
    
    //------------------------------------------------------------------------------
    // find a contiguous group of clusters
    
    bool SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
    
      // end of group
      uint32_t endCluster;
      // last cluster of FAT
      uint32_t fatEnd = clusterCount_ + 1;
    
      bool setStart;
    
    
      // set search start cluster
      if (*curCluster) {
        // try to make file contiguous
        bgnCluster = *curCluster + 1;
    
        // don't save new start location
        setStart = false;
      } else {
        // start at likely place for free cluster
        bgnCluster = allocSearchStart_;
    
        // save next search start if one cluster
    
        setStart = count == 1;
    
      endCluster = bgnCluster;
    
    
      // search the FAT for free clusters
      for (uint32_t n = 0;; n++, endCluster++) {
        // can't find space checked all clusters
    
        if (n >= clusterCount_) goto fail;
    
    
        // past end - start from beginning of FAT
        if (endCluster > fatEnd) {
          bgnCluster = endCluster = 2;
        }
        uint32_t f;
    
        if (!fatGet(endCluster, &f)) goto fail;
    
    
        if (f != 0) {
          // cluster in use try next cluster as bgnCluster
          bgnCluster = endCluster + 1;
        } else if ((endCluster - bgnCluster + 1) == count) {
          // done - found space
          break;
        }
      }
      // mark end of chain
    
      if (!fatPutEOC(endCluster)) goto fail;
    
        if (!fatPut(endCluster - 1, endCluster)) goto fail;
    
        if (!fatPut(*curCluster, bgnCluster)) goto fail;
    
      }
      // return first cluster number to caller
      *curCluster = bgnCluster;
    
      // remember possible next free cluster
      if (setStart) allocSearchStart_ = bgnCluster + 1;
    
      return true;
    
    
     fail:
      return false;
    
    }
    //------------------------------------------------------------------------------
    
    bool SdVolume::cacheFlush() {
    
      if (cacheDirty_) {
        if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
    
          goto fail;
    
        }
        // mirror FAT tables
        if (cacheMirrorBlock_) {
          if (!sdCard_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data)) {
    
            goto fail;
    
    
     fail:
      return false;
    
    }
    //------------------------------------------------------------------------------
    
    bool SdVolume::cacheRawBlock(uint32_t blockNumber, bool dirty) {
    
        if (!cacheFlush()) goto fail;
        if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) goto fail;
    
      if (dirty) cacheDirty_ = true;
    
     fail:
      return false;
    
    }
    //------------------------------------------------------------------------------
    // return the size in bytes of a cluster chain
    
    bool SdVolume::chainSize(uint32_t cluster, uint32_t* size) {
    
        if (!fatGet(cluster, &cluster)) goto fail;
    
        s += 512UL << clusterSizeShift_;
      } while (!isEOC(cluster));
      *size = s;
      return true;
    
    
     fail:
      return false;
    
    }
    //------------------------------------------------------------------------------
    // Fetch a FAT entry
    
    bool SdVolume::fatGet(uint32_t cluster, uint32_t* value) {
      uint32_t lba;
      if (cluster > (clusterCount_ + 1)) goto fail;
      if (FAT12_SUPPORT && fatType_ == 12) {
        uint16_t index = cluster;
        index += index >> 1;
        lba = fatStartBlock_ + (index >> 9);
        if (!cacheRawBlock(lba, CACHE_FOR_READ)) goto fail;
        index &= 0X1FF;
        uint16_t tmp = cacheBuffer_.data[index];
        index++;
        if (index == 512) {
          if (!cacheRawBlock(lba + 1, CACHE_FOR_READ)) goto fail;
          index = 0;
        }
        tmp |= cacheBuffer_.data[index] << 8;
        *value = cluster & 1 ? tmp >> 4 : tmp & 0XFFF;
        return true;
      }
      if (fatType_ == 16) {
        lba = fatStartBlock_ + (cluster >> 8);
      } else if (fatType_ == 32) {
        lba = fatStartBlock_ + (cluster >> 7);
      } else {
        goto fail;
      }
    
        if (!cacheRawBlock(lba, CACHE_FOR_READ)) goto fail;
    
      }
      if (fatType_ == 16) {
        *value = cacheBuffer_.fat16[cluster & 0XFF];
      } else {
        *value = cacheBuffer_.fat32[cluster & 0X7F] & FAT32MASK;
      }
      return true;
    
    
     fail:
      return false;
    
    }
    //------------------------------------------------------------------------------
    // Store a FAT entry
    
    bool SdVolume::fatPut(uint32_t cluster, uint32_t value) {
      uint32_t lba;
    
      if (cluster < 2) goto fail;
    
      if (cluster > (clusterCount_ + 1)) goto fail;
    
      if (FAT12_SUPPORT && fatType_ == 12) {
        uint16_t index = cluster;
        index += index >> 1;
        lba = fatStartBlock_ + (index >> 9);
        if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) goto fail;
        // mirror second FAT
        if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
        index &= 0X1FF;
        uint8_t tmp = value;
        if (cluster & 1) {
          tmp = (cacheBuffer_.data[index] & 0XF) | tmp << 4;
        }
        cacheBuffer_.data[index] = tmp;
        index++;
        if (index == 512) {
          lba++;
          index = 0;
          if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) goto fail;
          // mirror second FAT
          if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
        }
        tmp = value >> 4;
        if (!(cluster & 1)) {
          tmp = ((cacheBuffer_.data[index] & 0XF0)) | tmp >> 4;
        }
        cacheBuffer_.data[index] = tmp;
        return true;
    
      if (fatType_ == 16) {
        lba = fatStartBlock_ + (cluster >> 8);
      } else if (fatType_ == 32) {
        lba = fatStartBlock_ + (cluster >> 7);
      } else {
        goto fail;
      }
      if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) goto fail;
    
      // store entry
      if (fatType_ == 16) {
        cacheBuffer_.fat16[cluster & 0XFF] = value;
      } else {
        cacheBuffer_.fat32[cluster & 0X7F] = value;
      }
      // mirror second FAT
      if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
      return true;
    
    
     fail:
      return false;
    
    }
    //------------------------------------------------------------------------------
    // free a cluster chain
    
    bool SdVolume::freeChain(uint32_t cluster) {
      uint32_t next;
    
    
        if (!fatGet(cluster, &next)) goto fail;
    
        if (!fatPut(cluster, 0)) goto fail;
    
    
     fail:
      return false;
    }
    //------------------------------------------------------------------------------
    /** Volume free space in clusters.
     *
     * \return Count of free clusters for success or -1 if an error occurs.
     */
    int32_t SdVolume::freeClusterCount() {
      uint32_t free = 0;
      uint16_t n;
      uint32_t todo = clusterCount_ + 2;
    
      if (fatType_ == 16) {
        n = 256;
      } else if (fatType_ == 32) {
        n = 128;
      } else {
        // put FAT12 here
        return -1;
      }
    
      for (uint32_t lba = fatStartBlock_; todo; todo -= n, lba++) {
        if (!cacheRawBlock(lba, CACHE_FOR_READ)) return -1;
        if (todo < n) n = todo;
        if (fatType_ == 16) {
          for (uint16_t i = 0; i < n; i++) {
            if (cacheBuffer_.fat16[i] == 0) free++;
          }
        } else {
          for (uint16_t i = 0; i < n; i++) {
            if (cacheBuffer_.fat32[i] == 0) free++;
          }
        }
      }
      return free;
    
    }
    //------------------------------------------------------------------------------
    
    /** Initialize a FAT volume.
    
     *
     * \param[in] dev The SD card where the volume is located.
     *
     * \param[in] part The partition to be used.  Legal values for \a part are
     * 1-4 to use the corresponding partition on a device formatted with
     * a MBR, Master Boot Record, or zero if the device is formatted as
     * a super floppy with the FAT boot sector in block zero.
     *
     * \return The value one, true, is returned for success and
     * the value zero, false, is returned for failure.  Reasons for
     * failure include not finding a valid partition, not finding a valid
     * FAT file system in the specified partition or an I/O error.
     */
    
    bool SdVolume::init(Sd2Card* dev, uint8_t part) {
      uint32_t totalBlocks;
    
      fat32_boot_t* fbs;
    
    
      fatType_ = 0;
      allocSearchStart_ = 2;
      cacheDirty_ = 0;  // cacheFlush() will write block if true
      cacheMirrorBlock_ = 0;
      cacheBlockNumber_ = 0XFFFFFFFF;
    
    
      // if part == 0 assume super floppy with FAT boot sector in block zero
      // if part > 0 assume mbr volume with partition table
      if (part) {
    
        if (part > 4)goto fail;
        if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) goto fail;
    
        part_t* p = &cacheBuffer_.mbr.part[part-1];
        if ((p->boot & 0X7F) !=0  ||
          p->totalSectors < 100 ||
          p->firstSector == 0) {
          // not a valid partition
    
          goto fail;
    
      if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) goto fail;
      fbs = &cacheBuffer_.fbs32;
      if (fbs->bytesPerSector != 512 ||
        fbs->fatCount == 0 ||
        fbs->reservedSectorCount == 0 ||
        fbs->sectorsPerCluster == 0) {
    
          goto fail;
    
      fatCount_ = fbs->fatCount;
      blocksPerCluster_ = fbs->sectorsPerCluster;
    
      // determine shift that is same as multiply by blocksPerCluster_
      clusterSizeShift_ = 0;
    
      while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
    
        if (clusterSizeShift_++ > 7) goto fail;
    
      blocksPerFat_ = fbs->sectorsPerFat16 ?
                        fbs->sectorsPerFat16 : fbs->sectorsPerFat32;
    
      fatStartBlock_ = volumeStartBlock + fbs->reservedSectorCount;
    
      rootDirEntryCount_ = fbs->rootDirEntryCount;
    
      rootDirStart_ = fatStartBlock_ + fbs->fatCount * blocksPerFat_;
    
      dataStartBlock_ = rootDirStart_ + ((32 * fbs->rootDirEntryCount + 511)/512);
    
      totalBlocks = fbs->totalSectors16 ?
                               fbs->totalSectors16 : fbs->totalSectors32;
    
      // total data blocks
      clusterCount_ = totalBlocks - (dataStartBlock_ - volumeStartBlock);
    
      // divide by cluster size to get cluster count
      clusterCount_ >>= clusterSizeShift_;
    
      // FAT type is determined by cluster count
      if (clusterCount_ < 4085) {
        fatType_ = 12;
    
        if (!FAT12_SUPPORT) goto fail;
    
      } else if (clusterCount_ < 65525) {
        fatType_ = 16;
      } else {
    
        rootDirStart_ = fbs->fat32RootCluster;
    
    
     fail:
      return false;