Skip to content
Snippets Groups Projects
Select Git revision
  • 1fc69df0008e9592b503103f58a6afe09bd75b32
  • master default protected
  • renovate/symfony
  • renovate/webpack-cli-6.x
  • renovate/sass-1.x-lockfile
  • renovate/font-awesome
  • renovate/major-phpstan-packages
7 results

webpack.config.js

Blame
  • stepper.cpp 38.87 KiB
    /**
     * Marlin 3D Printer Firmware
     * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
     *
     * Based on Sprinter and grbl.
     * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
     *
     * This program is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program.  If not, see <http://www.gnu.org/licenses/>.
     *
     */
    
    /**
     * stepper.cpp - A singleton object to execute motion plans using stepper motors
     * Marlin Firmware
     *
     * Derived from Grbl
     * Copyright (c) 2009-2011 Simen Svale Skogsrud
     *
     * Grbl is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Grbl is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
       and Philipp Tiefenbacher. */
    
    #include "Marlin.h"
    #include "stepper.h"
    #include "endstops.h"
    #include "planner.h"
    #include "temperature.h"
    #include "ultralcd.h"
    #include "language.h"
    #include "cardreader.h"
    #include "speed_lookuptable.h"
    
    #if HAS_DIGIPOTSS
      #include <SPI.h>
    #endif
    
    Stepper stepper; // Singleton
    
    // public:
    
    block_t* Stepper::current_block = NULL;  // A pointer to the block currently being traced
    
    #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
      bool Stepper::abort_on_endstop_hit = false;
    #endif
    
    #if ENABLED(Z_DUAL_ENDSTOPS)
      bool Stepper::performing_homing = false;
    #endif
    
    // private:
    
    unsigned char Stepper::last_direction_bits = 0;        // The next stepping-bits to be output
    unsigned int Stepper::cleaning_buffer_counter = 0;
    
    #if ENABLED(Z_DUAL_ENDSTOPS)
      bool Stepper::locked_z_motor = false;
      bool Stepper::locked_z2_motor = false;
    #endif
    
    long  Stepper::counter_X = 0,
          Stepper::counter_Y = 0,
          Stepper::counter_Z = 0,
          Stepper::counter_E = 0;
    
    volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
    
    #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
    
      unsigned char Stepper::old_OCR0A;
      volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
    
      #if ENABLED(LIN_ADVANCE)
        volatile int Stepper::e_steps[E_STEPPERS];
        int Stepper::extruder_advance_k = LIN_ADVANCE_K,
            Stepper::final_estep_rate,
            Stepper::current_estep_rate[E_STEPPERS],
            Stepper::current_adv_steps[E_STEPPERS];
      #else
        long  Stepper::e_steps[E_STEPPERS],
              Stepper::final_advance = 0,
              Stepper::old_advance = 0,
              Stepper::advance_rate,
              Stepper::advance;
      #endif
    #endif
    
    long Stepper::acceleration_time, Stepper::deceleration_time;
    
    volatile long Stepper::count_position[NUM_AXIS] = { 0 };
    volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
    
    #if ENABLED(MIXING_EXTRUDER)
      long Stepper::counter_m[MIXING_STEPPERS];
    #endif
    
    unsigned short Stepper::acc_step_rate; // needed for deceleration start point
    uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
    unsigned short Stepper::OCR1A_nominal;
    
    volatile long Stepper::endstops_trigsteps[XYZ];
    
    #if ENABLED(X_DUAL_STEPPER_DRIVERS)
      #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
      #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
    #elif ENABLED(DUAL_X_CARRIAGE)
      #define X_APPLY_DIR(v,ALWAYS) \
        if (extruder_duplication_enabled || ALWAYS) { \
          X_DIR_WRITE(v); \
          X2_DIR_WRITE(v); \
        } \
        else { \
          if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
        }
      #define X_APPLY_STEP(v,ALWAYS) \
        if (extruder_duplication_enabled || ALWAYS) { \
          X_STEP_WRITE(v); \
          X2_STEP_WRITE(v); \
        } \
        else { \
          if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
        }
    #else
      #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
      #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
    #endif
    
    #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
      #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
      #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
    #else
      #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
      #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
    #endif
    
    #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
      #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
      #if ENABLED(Z_DUAL_ENDSTOPS)
        #define Z_APPLY_STEP(v,Q) \
        if (performing_homing) { \
          if (Z_HOME_DIR > 0) {\
            if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
            if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
          } \
          else { \
            if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
            if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
          } \
        } \
        else { \
          Z_STEP_WRITE(v); \
          Z2_STEP_WRITE(v); \
        }
      #else
        #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
      #endif
    #else
      #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
      #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
    #endif
    
    #if DISABLED(MIXING_EXTRUDER)
      #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
    #endif
    
    // intRes = longIn1 * longIn2 >> 24
    // uses:
    // r26 to store 0
    // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
    // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
    // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
    // B0 A0 are bits 24-39 and are the returned value
    // C1 B1 A1 is longIn1
    // D2 C2 B2 A2 is longIn2
    //
    #define MultiU24X32toH16(intRes, longIn1, longIn2) \
      asm volatile ( \
                     "clr r26 \n\t" \
                     "mul %A1, %B2 \n\t" \
                     "mov r27, r1 \n\t" \
                     "mul %B1, %C2 \n\t" \
                     "movw %A0, r0 \n\t" \
                     "mul %C1, %C2 \n\t" \
                     "add %B0, r0 \n\t" \
                     "mul %C1, %B2 \n\t" \
                     "add %A0, r0 \n\t" \
                     "adc %B0, r1 \n\t" \
                     "mul %A1, %C2 \n\t" \
                     "add r27, r0 \n\t" \
                     "adc %A0, r1 \n\t" \
                     "adc %B0, r26 \n\t" \
                     "mul %B1, %B2 \n\t" \
                     "add r27, r0 \n\t" \
                     "adc %A0, r1 \n\t" \
                     "adc %B0, r26 \n\t" \
                     "mul %C1, %A2 \n\t" \
                     "add r27, r0 \n\t" \
                     "adc %A0, r1 \n\t" \
                     "adc %B0, r26 \n\t" \
                     "mul %B1, %A2 \n\t" \
                     "add r27, r1 \n\t" \
                     "adc %A0, r26 \n\t" \
                     "adc %B0, r26 \n\t" \
                     "lsr r27 \n\t" \
                     "adc %A0, r26 \n\t" \
                     "adc %B0, r26 \n\t" \
                     "mul %D2, %A1 \n\t" \
                     "add %A0, r0 \n\t" \
                     "adc %B0, r1 \n\t" \
                     "mul %D2, %B1 \n\t" \
                     "add %B0, r0 \n\t" \
                     "clr r1 \n\t" \
                     : \
                     "=&r" (intRes) \
                     : \
                     "d" (longIn1), \
                     "d" (longIn2) \
                     : \
                     "r26" , "r27" \
                   )
    
    // Some useful constants
    
    #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
    #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
    
    /**
     *         __________________________
     *        /|                        |\     _________________         ^
     *       / |                        | \   /|               |\        |
     *      /  |                        |  \ / |               | \       s
     *     /   |                        |   |  |               |  \      p
     *    /    |                        |   |  |               |   \     e
     *   +-----+------------------------+---+--+---------------+----+    e
     *   |               BLOCK 1            |      BLOCK 2          |    d
     *
     *                           time ----->
     *
     *  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
     *  first block->accelerate_until step_events_completed, then keeps going at constant speed until
     *  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
     *  The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
     */
    void Stepper::wake_up() {
      //  TCNT1 = 0;
      ENABLE_STEPPER_DRIVER_INTERRUPT();
    }
    
    /**
     * Set the stepper direction of each axis
     *
     *   COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
     *   COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
     *   COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
     */
    void Stepper::set_directions() {
    
      #define SET_STEP_DIR(AXIS) \
        if (motor_direction(AXIS ##_AXIS)) { \
          AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
          count_direction[AXIS ##_AXIS] = -1; \
        } \
        else { \
          AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
          count_direction[AXIS ##_AXIS] = 1; \
        }
    
      #if HAS_X_DIR
        SET_STEP_DIR(X); // A
      #endif
      #if HAS_Y_DIR
        SET_STEP_DIR(Y); // B
      #endif
      #if HAS_Z_DIR
        SET_STEP_DIR(Z); // C
      #endif
    
      #if DISABLED(ADVANCE)
        if (motor_direction(E_AXIS)) {
          REV_E_DIR();
          count_direction[E_AXIS] = -1;
        }
        else {
          NORM_E_DIR();
          count_direction[E_AXIS] = 1;
        }
      #endif //!ADVANCE
    }
    
    // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
    // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
    ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
    
    void Stepper::isr() {
      if (cleaning_buffer_counter) {
        current_block = NULL;
        planner.discard_current_block();
        #ifdef SD_FINISHED_RELEASECOMMAND
          if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
        #endif
        cleaning_buffer_counter--;
        OCR1A = 200;
        return;
      }
    
      // If there is no current block, attempt to pop one from the buffer
      if (!current_block) {
        // Anything in the buffer?
        current_block = planner.get_current_block();
        if (current_block) {
          current_block->busy = true;
          trapezoid_generator_reset();
    
          // Initialize Bresenham counters to 1/2 the ceiling
          counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
    
          #if ENABLED(MIXING_EXTRUDER)
            MIXING_STEPPERS_LOOP(i)
              counter_m[i] = -(current_block->mix_event_count[i] >> 1);
          #endif
    
          step_events_completed = 0;
    
          #if ENABLED(Z_LATE_ENABLE)
            if (current_block->steps[Z_AXIS] > 0) {
              enable_z();
              OCR1A = 2000; //1ms wait
              return;
            }
          #endif
    
          // #if ENABLED(ADVANCE)
          //   e_steps[TOOL_E_INDEX] = 0;
          // #endif
        }
        else {
          OCR1A = 2000; // 1kHz.
        }
      }
    
      if (current_block) {
    
        // Update endstops state, if enabled
        if (endstops.enabled
          #if HAS_BED_PROBE
            || endstops.z_probe_enabled
          #endif
        ) endstops.update();
    
        // Take multiple steps per interrupt (For high speed moves)
        bool all_steps_done = false;
        for (int8_t i = 0; i < step_loops; i++) {
          #ifndef USBCON
            customizedSerial.checkRx(); // Check for serial chars.
          #endif
    
          #if ENABLED(LIN_ADVANCE)
    
            counter_E += current_block->steps[E_AXIS];
            if (counter_E > 0) {
              counter_E -= current_block->step_event_count;
              #if DISABLED(MIXING_EXTRUDER)
                // Don't step E here for mixing extruder
                count_position[E_AXIS] += count_direction[E_AXIS];
                motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
              #endif
            }
    
            #if ENABLED(MIXING_EXTRUDER)
              // Step mixing steppers proportionally
              bool dir = motor_direction(E_AXIS);
              MIXING_STEPPERS_LOOP(j) {
                counter_m[j] += current_block->steps[E_AXIS];
                if (counter_m[j] > 0) {
                  counter_m[j] -= current_block->mix_event_count[j];
                  dir ? --e_steps[j] : ++e_steps[j];
                }
              }
            #endif
    
            if (current_block->use_advance_lead) {
              int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
              #if ENABLED(MIXING_EXTRUDER)
                // Mixing extruders apply advance lead proportionally
                MIXING_STEPPERS_LOOP(j) {
                  int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
                  e_steps[j] += steps;
                  current_adv_steps[j] += steps;
                }
              #else
                // For most extruders, advance the single E stepper
                e_steps[TOOL_E_INDEX] += delta_adv_steps;
                current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
              #endif
            }
    
          #elif ENABLED(ADVANCE)
    
            // Always count the unified E axis
            counter_E += current_block->steps[E_AXIS];
            if (counter_E > 0) {
              counter_E -= current_block->step_event_count;
              #if DISABLED(MIXING_EXTRUDER)
                // Don't step E here for mixing extruder
                e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
              #endif
            }
    
            #if ENABLED(MIXING_EXTRUDER)
    
              // Step mixing steppers proportionally
              bool dir = motor_direction(E_AXIS);
              MIXING_STEPPERS_LOOP(j) {
                counter_m[j] += current_block->steps[E_AXIS];
                if (counter_m[j] > 0) {
                  counter_m[j] -= current_block->mix_event_count[j];
                  dir ? --e_steps[j] : ++e_steps[j];
                }
              }
    
            #endif // MIXING_EXTRUDER
    
          #endif // ADVANCE or LIN_ADVANCE
    
          #define _COUNTER(AXIS) counter_## AXIS
          #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
          #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
    
          // Advance the Bresenham counter; start a pulse if the axis needs a step
          #define PULSE_START(AXIS) \
            _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
            if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
    
          // Stop an active pulse, reset the Bresenham counter, update the position
          #define PULSE_STOP(AXIS) \
            if (_COUNTER(AXIS) > 0) { \
              _COUNTER(AXIS) -= current_block->step_event_count; \
              count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
              _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
            }
    
          // If a minimum pulse time was specified get the CPU clock
          #if MINIMUM_STEPPER_PULSE > 0
            static uint32_t pulse_start;
            pulse_start = TCNT0;
          #endif
    
          #if HAS_X_STEP
            PULSE_START(X);
          #endif
          #if HAS_Y_STEP
            PULSE_START(Y);
          #endif
          #if HAS_Z_STEP
            PULSE_START(Z);
          #endif
    
          // For non-advance use linear interpolation for E also
          #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
            #if ENABLED(MIXING_EXTRUDER)
              // Keep updating the single E axis
              counter_E += current_block->steps[E_AXIS];
              // Tick the counters used for this mix
              MIXING_STEPPERS_LOOP(j) {
                // Step mixing steppers (proportionally)
                counter_m[j] += current_block->steps[E_AXIS];
                // Step when the counter goes over zero
                if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
              }
            #else // !MIXING_EXTRUDER
              PULSE_START(E);
            #endif
          #endif // !ADVANCE && !LIN_ADVANCE
    
          // For a minimum pulse time wait before stopping pulses
          #if MINIMUM_STEPPER_PULSE > 0
            #define CYCLES_EATEN_BY_CODE 10
            while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
          #endif
    
          #if HAS_X_STEP
            PULSE_STOP(X);
          #endif
          #if HAS_Y_STEP
            PULSE_STOP(Y);
          #endif
          #if HAS_Z_STEP
            PULSE_STOP(Z);
          #endif
    
          #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
            #if ENABLED(MIXING_EXTRUDER)
              // Always step the single E axis
              if (counter_E > 0) {
                counter_E -= current_block->step_event_count;
                count_position[E_AXIS] += count_direction[E_AXIS];
              }
              MIXING_STEPPERS_LOOP(j) {
                if (counter_m[j] > 0) {
                  counter_m[j] -= current_block->mix_event_count[j];
                  En_STEP_WRITE(j, INVERT_E_STEP_PIN);
                }
              }
            #else // !MIXING_EXTRUDER
              PULSE_STOP(E);
            #endif
          #endif // !ADVANCE && !LIN_ADVANCE
    
          if (++step_events_completed >= current_block->step_event_count) {
            all_steps_done = true;
            break;
          }
        }
    
        #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
          // If we have esteps to execute, fire the next advance_isr "now"
          if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
        #endif
    
        // Calculate new timer value
        uint16_t timer, step_rate;
        if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
    
          MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
          acc_step_rate += current_block->initial_rate;
    
          // upper limit
          NOMORE(acc_step_rate, current_block->nominal_rate);
    
          // step_rate to timer interval
          timer = calc_timer(acc_step_rate);
          OCR1A = timer;
          acceleration_time += timer;
    
          #if ENABLED(LIN_ADVANCE)
    
            if (current_block->use_advance_lead)
              current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
    
            if (current_block->use_advance_lead) {
              #if ENABLED(MIXING_EXTRUDER)
                MIXING_STEPPERS_LOOP(j)
                  current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
              #else
                current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
              #endif
            }
    
          #elif ENABLED(ADVANCE)
    
            advance += advance_rate * step_loops;
            //NOLESS(advance, current_block->advance);
    
            long advance_whole = advance >> 8,
                 advance_factor = advance_whole - old_advance;
    
            // Do E steps + advance steps
            #if ENABLED(MIXING_EXTRUDER)
              // ...for mixing steppers proportionally
              MIXING_STEPPERS_LOOP(j)
                e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
            #else
              // ...for the active extruder
              e_steps[TOOL_E_INDEX] += advance_factor;
            #endif
    
            old_advance = advance_whole;
    
          #endif // ADVANCE or LIN_ADVANCE
    
          #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
            eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
          #endif
        }
        else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
          MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
    
          if (step_rate < acc_step_rate) { // Still decelerating?
            step_rate = acc_step_rate - step_rate;
            NOLESS(step_rate, current_block->final_rate);
          }
          else
            step_rate = current_block->final_rate;
    
          // step_rate to timer interval
          timer = calc_timer(step_rate);
          OCR1A = timer;
          deceleration_time += timer;
    
          #if ENABLED(LIN_ADVANCE)
    
            if (current_block->use_advance_lead) {
              #if ENABLED(MIXING_EXTRUDER)
                MIXING_STEPPERS_LOOP(j)
                  current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
              #else
                current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
              #endif
            }
    
          #elif ENABLED(ADVANCE)
    
            advance -= advance_rate * step_loops;
            NOLESS(advance, final_advance);
    
            // Do E steps + advance steps
            long advance_whole = advance >> 8,
                 advance_factor = advance_whole - old_advance;
    
            #if ENABLED(MIXING_EXTRUDER)
              MIXING_STEPPERS_LOOP(j)
                e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
            #else
              e_steps[TOOL_E_INDEX] += advance_factor;
            #endif
    
            old_advance = advance_whole;
    
          #endif // ADVANCE or LIN_ADVANCE
    
          #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
            eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
          #endif
        }
        else {
    
          #if ENABLED(LIN_ADVANCE)
    
            if (current_block->use_advance_lead)
              current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
    
            eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
    
          #endif
    
          OCR1A = OCR1A_nominal;
          // ensure we're running at the correct step rate, even if we just came off an acceleration
          step_loops = step_loops_nominal;
        }
    
        NOLESS(OCR1A, TCNT1 + 16);
    
        // If current block is finished, reset pointer
        if (all_steps_done) {
          current_block = NULL;
          planner.discard_current_block();
        }
      }
    }
    
    #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
    
      // Timer interrupt for E. e_steps is set in the main routine;
      // Timer 0 is shared with millies
      ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
    
      void Stepper::advance_isr() {
    
        old_OCR0A += eISR_Rate;
        OCR0A = old_OCR0A;
    
        #define SET_E_STEP_DIR(INDEX) \
          E## INDEX ##_DIR_WRITE(e_steps[INDEX] <= 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
    
        #define START_E_PULSE(INDEX) \
          if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN)
    
        #define STOP_E_PULSE(INDEX) \
          if (e_steps[INDEX]) { \
            e_steps[INDEX] <= 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
            E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
          }
    
        SET_E_STEP_DIR(0);
        #if E_STEPPERS > 1
          SET_E_STEP_DIR(1);
          #if E_STEPPERS > 2
            SET_E_STEP_DIR(2);
            #if E_STEPPERS > 3
              SET_E_STEP_DIR(3);
            #endif
          #endif
        #endif
    
        // Step all E steppers that have steps
        for (uint8_t i = 0; i < step_loops; i++) {
    
          #if MINIMUM_STEPPER_PULSE > 0
            static uint32_t pulse_start;
            pulse_start = TCNT0;
          #endif
    
          START_E_PULSE(0);
          #if E_STEPPERS > 1
            START_E_PULSE(1);
            #if E_STEPPERS > 2
              START_E_PULSE(2);
              #if E_STEPPERS > 3
                START_E_PULSE(3);
              #endif
            #endif
          #endif
    
          // For a minimum pulse time wait before stopping pulses
          #if MINIMUM_STEPPER_PULSE > 0
            #define CYCLES_EATEN_BY_E 10
            while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_E) { /* nada */ }
          #endif
    
          STOP_E_PULSE(0);
          #if E_STEPPERS > 1
            STOP_E_PULSE(1);
            #if E_STEPPERS > 2
              STOP_E_PULSE(2);
              #if E_STEPPERS > 3
                STOP_E_PULSE(3);
              #endif
            #endif
          #endif
        }
    
      }
    
    #endif // ADVANCE or LIN_ADVANCE
    
    void Stepper::init() {
    
      digipot_init(); //Initialize Digipot Motor Current
      microstep_init(); //Initialize Microstepping Pins
    
      // initialise TMC Steppers
      #if ENABLED(HAVE_TMCDRIVER)
        tmc_init();
      #endif
        // initialise L6470 Steppers
      #if ENABLED(HAVE_L6470DRIVER)
        L6470_init();
      #endif
    
      // Initialize Dir Pins
      #if HAS_X_DIR
        X_DIR_INIT;
      #endif
      #if HAS_X2_DIR
        X2_DIR_INIT;
      #endif
      #if HAS_Y_DIR
        Y_DIR_INIT;
        #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
          Y2_DIR_INIT;
        #endif
      #endif
      #if HAS_Z_DIR
        Z_DIR_INIT;
        #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
          Z2_DIR_INIT;
        #endif
      #endif
      #if HAS_E0_DIR
        E0_DIR_INIT;
      #endif
      #if HAS_E1_DIR
        E1_DIR_INIT;
      #endif
      #if HAS_E2_DIR
        E2_DIR_INIT;
      #endif
      #if HAS_E3_DIR
        E3_DIR_INIT;
      #endif
    
      //Initialize Enable Pins - steppers default to disabled.
    
      #if HAS_X_ENABLE
        X_ENABLE_INIT;
        if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
        #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
          X2_ENABLE_INIT;
          if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
        #endif
      #endif
    
      #if HAS_Y_ENABLE
        Y_ENABLE_INIT;
        if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
        #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
          Y2_ENABLE_INIT;
          if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
        #endif
      #endif
    
      #if HAS_Z_ENABLE
        Z_ENABLE_INIT;
        if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
        #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
          Z2_ENABLE_INIT;
          if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
        #endif
      #endif
    
      #if HAS_E0_ENABLE
        E0_ENABLE_INIT;
        if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
      #endif
      #if HAS_E1_ENABLE
        E1_ENABLE_INIT;
        if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
      #endif
      #if HAS_E2_ENABLE
        E2_ENABLE_INIT;
        if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
      #endif
      #if HAS_E3_ENABLE
        E3_ENABLE_INIT;
        if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
      #endif
    
      //
      // Init endstops and pullups here
      //
      endstops.init();
    
      #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
      #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
      #define _DISABLE(axis) disable_## axis()
    
      #define AXIS_INIT(axis, AXIS, PIN) \
        _STEP_INIT(AXIS); \
        _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
        _DISABLE(axis)
    
      #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
    
      // Initialize Step Pins
      #if HAS_X_STEP
        #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
          X2_STEP_INIT;
          X2_STEP_WRITE(INVERT_X_STEP_PIN);
        #endif
        AXIS_INIT(x, X, X);
      #endif
    
      #if HAS_Y_STEP
        #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
          Y2_STEP_INIT;
          Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
        #endif
        AXIS_INIT(y, Y, Y);
      #endif
    
      #if HAS_Z_STEP
        #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
          Z2_STEP_INIT;
          Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
        #endif
        AXIS_INIT(z, Z, Z);
      #endif
    
      #if HAS_E0_STEP
        E_AXIS_INIT(0);
      #endif
      #if HAS_E1_STEP
        E_AXIS_INIT(1);
      #endif
      #if HAS_E2_STEP
        E_AXIS_INIT(2);
      #endif
      #if HAS_E3_STEP
        E_AXIS_INIT(3);
      #endif
    
      // waveform generation = 0100 = CTC
      CBI(TCCR1B, WGM13);
      SBI(TCCR1B, WGM12);
      CBI(TCCR1A, WGM11);
      CBI(TCCR1A, WGM10);
    
      // output mode = 00 (disconnected)
      TCCR1A &= ~(3 << COM1A0);
      TCCR1A &= ~(3 << COM1B0);
      // Set the timer pre-scaler
      // Generally we use a divider of 8, resulting in a 2MHz timer
      // frequency on a 16MHz MCU. If you are going to change this, be
      // sure to regenerate speed_lookuptable.h with
      // create_speed_lookuptable.py
      TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
    
      OCR1A = 0x4000;
      TCNT1 = 0;
      ENABLE_STEPPER_DRIVER_INTERRUPT();
    
      #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
    
        for (int i = 0; i < E_STEPPERS; i++) {
          e_steps[i] = 0;
          #if ENABLED(LIN_ADVANCE)
            current_adv_steps[i] = 0;
          #endif
        }
    
        #if defined(TCCR0A) && defined(WGM01)
          CBI(TCCR0A, WGM01);
          CBI(TCCR0A, WGM00);
        #endif
        SBI(TIMSK0, OCIE0A);
    
      #endif // ADVANCE or LIN_ADVANCE
    
      endstops.enable(true); // Start with endstops active. After homing they can be disabled
      sei();
    
      set_directions(); // Init directions to last_direction_bits = 0
    }
    
    
    /**
     * Block until all buffered steps are executed
     */
    void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
    
    /**
     * Set the stepper positions directly in steps
     *
     * The input is based on the typical per-axis XYZ steps.
     * For CORE machines XYZ needs to be translated to ABC.
     *
     * This allows get_axis_position_mm to correctly
     * derive the current XYZ position later on.
     */
    void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
      CRITICAL_SECTION_START;
    
      #if ENABLED(COREXY)
        // corexy positioning
        // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
        count_position[A_AXIS] = x + y;
        count_position[B_AXIS] = x - y;
        count_position[Z_AXIS] = z;
      #elif ENABLED(COREXZ)
        // corexz planning
        count_position[A_AXIS] = x + z;
        count_position[Y_AXIS] = y;
        count_position[C_AXIS] = x - z;
      #elif ENABLED(COREYZ)
        // coreyz planning
        count_position[X_AXIS] = x;
        count_position[B_AXIS] = y + z;
        count_position[C_AXIS] = y - z;
      #else
        // default non-h-bot planning
        count_position[X_AXIS] = x;
        count_position[Y_AXIS] = y;
        count_position[Z_AXIS] = z;
      #endif
    
      count_position[E_AXIS] = e;
      CRITICAL_SECTION_END;
    }
    
    void Stepper::set_e_position(const long& e) {
      CRITICAL_SECTION_START;
      count_position[E_AXIS] = e;
      CRITICAL_SECTION_END;
    }
    
    /**
     * Get a stepper's position in steps.
     */
    long Stepper::position(AxisEnum axis) {
      CRITICAL_SECTION_START;
      long count_pos = count_position[axis];
      CRITICAL_SECTION_END;
      return count_pos;
    }
    
    /**
     * Get an axis position according to stepper position(s)
     * For CORE machines apply translation from ABC to XYZ.
     */
    float Stepper::get_axis_position_mm(AxisEnum axis) {
      float axis_steps;
      #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
        // Requesting one of the "core" axes?
        if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
          CRITICAL_SECTION_START;
          long pos1 = count_position[CORE_AXIS_1],
               pos2 = count_position[CORE_AXIS_2];
          CRITICAL_SECTION_END;
          // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
          // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
          axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
        }
        else
          axis_steps = position(axis);
      #else
        axis_steps = position(axis);
      #endif
      return axis_steps * planner.steps_to_mm[axis];
    }
    
    void Stepper::finish_and_disable() {
      synchronize();
      disable_all_steppers();
    }
    
    void Stepper::quick_stop() {
      cleaning_buffer_counter = 5000;
      DISABLE_STEPPER_DRIVER_INTERRUPT();
      while (planner.blocks_queued()) planner.discard_current_block();
      current_block = NULL;
      ENABLE_STEPPER_DRIVER_INTERRUPT();
    }
    
    void Stepper::endstop_triggered(AxisEnum axis) {
    
      #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
    
        float axis_pos = count_position[axis];
        if (axis == CORE_AXIS_1)
          axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
        else if (axis == CORE_AXIS_2)
          axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
        endstops_trigsteps[axis] = axis_pos;
    
      #else // !COREXY && !COREXZ && !COREYZ
    
        endstops_trigsteps[axis] = count_position[axis];
    
      #endif // !COREXY && !COREXZ && !COREYZ
    
      kill_current_block();
    }
    
    void Stepper::report_positions() {
      CRITICAL_SECTION_START;
      long xpos = count_position[X_AXIS],
           ypos = count_position[Y_AXIS],
           zpos = count_position[Z_AXIS];
      CRITICAL_SECTION_END;
    
      #if ENABLED(COREXY) || ENABLED(COREXZ)
        SERIAL_PROTOCOLPGM(MSG_COUNT_A);
      #else
        SERIAL_PROTOCOLPGM(MSG_COUNT_X);
      #endif
      SERIAL_PROTOCOL(xpos);
    
      #if ENABLED(COREXY) || ENABLED(COREYZ)
        SERIAL_PROTOCOLPGM(" B:");
      #else
        SERIAL_PROTOCOLPGM(" Y:");
      #endif
      SERIAL_PROTOCOL(ypos);
    
      #if ENABLED(COREXZ) || ENABLED(COREYZ)
        SERIAL_PROTOCOLPGM(" C:");
      #else
        SERIAL_PROTOCOLPGM(" Z:");
      #endif
      SERIAL_PROTOCOL(zpos);
    
      SERIAL_EOL;
    }
    
    #if ENABLED(BABYSTEPPING)
    
      // MUST ONLY BE CALLED BY AN ISR,
      // No other ISR should ever interrupt this!
      void Stepper::babystep(const uint8_t axis, const bool direction) {
    
        #define _ENABLE(axis) enable_## axis()
        #define _READ_DIR(AXIS) AXIS ##_DIR_READ
        #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
        #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
    
        #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
            _ENABLE(axis); \
            uint8_t old_pin = _READ_DIR(AXIS); \
            _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
            _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
            delayMicroseconds(2); \
            _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
            _APPLY_DIR(AXIS, old_pin); \
          }
    
        switch (axis) {
    
          case X_AXIS:
            BABYSTEP_AXIS(x, X, false);
            break;
    
          case Y_AXIS:
            BABYSTEP_AXIS(y, Y, false);
            break;
    
          case Z_AXIS: {
    
            #if DISABLED(DELTA)
    
              BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
    
            #else // DELTA
    
              bool z_direction = direction ^ BABYSTEP_INVERT_Z;
    
              enable_x();
              enable_y();
              enable_z();
              uint8_t old_x_dir_pin = X_DIR_READ,
                      old_y_dir_pin = Y_DIR_READ,
                      old_z_dir_pin = Z_DIR_READ;
              //setup new step
              X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
              Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
              Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
              //perform step
              X_STEP_WRITE(!INVERT_X_STEP_PIN);
              Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
              Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
              delayMicroseconds(2);
              X_STEP_WRITE(INVERT_X_STEP_PIN);
              Y_STEP_WRITE(INVERT_Y_STEP_PIN);
              Z_STEP_WRITE(INVERT_Z_STEP_PIN);
              //get old pin state back.
              X_DIR_WRITE(old_x_dir_pin);
              Y_DIR_WRITE(old_y_dir_pin);
              Z_DIR_WRITE(old_z_dir_pin);
    
            #endif
    
          } break;
    
          default: break;
        }
      }
    
    #endif //BABYSTEPPING
    
    /**
     * Software-controlled Stepper Motor Current
     */
    
    #if HAS_DIGIPOTSS
    
      // From Arduino DigitalPotControl example
      void Stepper::digitalPotWrite(int address, int value) {
        digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
        SPI.transfer(address); //  send in the address and value via SPI:
        SPI.transfer(value);
        digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
        //delay(10);
      }
    
    #endif //HAS_DIGIPOTSS
    
    void Stepper::digipot_init() {
      #if HAS_DIGIPOTSS
        const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
    
        SPI.begin();
        pinMode(DIGIPOTSS_PIN, OUTPUT);
        for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
          //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
          digipot_current(i, digipot_motor_current[i]);
        }
      #endif
      #if HAS_MOTOR_CURRENT_PWM
        #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
          pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
          digipot_current(0, motor_current_setting[0]);
        #endif
        #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
          pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
          digipot_current(1, motor_current_setting[1]);
        #endif
        #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
          pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
          digipot_current(2, motor_current_setting[2]);
        #endif
        //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
        TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
      #endif
    }
    
    void Stepper::digipot_current(uint8_t driver, int current) {
      #if HAS_DIGIPOTSS
        const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
        digitalPotWrite(digipot_ch[driver], current);
      #elif HAS_MOTOR_CURRENT_PWM
        #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
        switch (driver) {
          #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
            case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
          #endif
          #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
            case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
          #endif
          #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
            case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
          #endif
        }
      #else
        UNUSED(driver);
        UNUSED(current);
      #endif
    }
    
    void Stepper::microstep_init() {
      #if HAS_MICROSTEPS_E1
        pinMode(E1_MS1_PIN, OUTPUT);
        pinMode(E1_MS2_PIN, OUTPUT);
      #endif
    
      #if HAS_MICROSTEPS
        pinMode(X_MS1_PIN, OUTPUT);
        pinMode(X_MS2_PIN, OUTPUT);
        pinMode(Y_MS1_PIN, OUTPUT);
        pinMode(Y_MS2_PIN, OUTPUT);
        pinMode(Z_MS1_PIN, OUTPUT);
        pinMode(Z_MS2_PIN, OUTPUT);
        pinMode(E0_MS1_PIN, OUTPUT);
        pinMode(E0_MS2_PIN, OUTPUT);
        const uint8_t microstep_modes[] = MICROSTEP_MODES;
        for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
          microstep_mode(i, microstep_modes[i]);
      #endif
    }
    
    /**
     * Software-controlled Microstepping
     */
    
    void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
      if (ms1 >= 0) switch (driver) {
        case 0: digitalWrite(X_MS1_PIN, ms1); break;
        case 1: digitalWrite(Y_MS1_PIN, ms1); break;
        case 2: digitalWrite(Z_MS1_PIN, ms1); break;
        case 3: digitalWrite(E0_MS1_PIN, ms1); break;
        #if HAS_MICROSTEPS_E1
          case 4: digitalWrite(E1_MS1_PIN, ms1); break;
        #endif
      }
      if (ms2 >= 0) switch (driver) {
        case 0: digitalWrite(X_MS2_PIN, ms2); break;
        case 1: digitalWrite(Y_MS2_PIN, ms2); break;
        case 2: digitalWrite(Z_MS2_PIN, ms2); break;
        case 3: digitalWrite(E0_MS2_PIN, ms2); break;
        #if PIN_EXISTS(E1_MS2)
          case 4: digitalWrite(E1_MS2_PIN, ms2); break;
        #endif
      }
    }
    
    void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
      switch (stepping_mode) {
        case 1: microstep_ms(driver, MICROSTEP1); break;
        case 2: microstep_ms(driver, MICROSTEP2); break;
        case 4: microstep_ms(driver, MICROSTEP4); break;
        case 8: microstep_ms(driver, MICROSTEP8); break;
        case 16: microstep_ms(driver, MICROSTEP16); break;
      }
    }
    
    void Stepper::microstep_readings() {
      SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
      SERIAL_PROTOCOLPGM("X: ");
      SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
      SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
      SERIAL_PROTOCOLPGM("Y: ");
      SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
      SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
      SERIAL_PROTOCOLPGM("Z: ");
      SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
      SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
      SERIAL_PROTOCOLPGM("E0: ");
      SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
      SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
      #if HAS_MICROSTEPS_E1
        SERIAL_PROTOCOLPGM("E1: ");
        SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
        SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
      #endif
    }
    
    #if ENABLED(LIN_ADVANCE)
    
      void Stepper::advance_M905(const float &k) {
        if (k >= 0) extruder_advance_k = k;
        SERIAL_ECHO_START;
        SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
        SERIAL_EOL;
      }
    
    #endif // LIN_ADVANCE