diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h
index 45a94e82e3431579855c9fd852f6528ad1a98430..46720d9a34552d264b87895b49f3db17c876b8b2 100644
--- a/Marlin/Marlin.h
+++ b/Marlin/Marlin.h
@@ -229,6 +229,7 @@ void refresh_cmd_timeout(void);
 extern float homing_feedrate[];
 extern bool axis_relative_modes[];
 extern int feedmultiply;
+extern int extrudemultiply; // Sets extrude multiply factor (in percent) for all extruders
 extern bool volumetric_enabled;
 extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
 extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 0f0445352355ca77163c8ac529ae06b7d217446e..00962062460fdb6e33721ebd80feda06e2771ad0 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -79,7 +79,7 @@
 // G4  - Dwell S<seconds> or P<milliseconds>
 // G10 - retract filament according to settings of M207
 // G11 - retract recover filament according to settings of M208
-// G28 - Home one or more axes
+// G28 - Home all Axis
 // G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
 // G30 - Single Z Probe, probes bed at current XY location.
 // G31 - Dock sled (Z_PROBE_SLED only)
@@ -210,6 +210,7 @@ int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
 bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
 int feedmultiply = 100; //100->1 200->2
 int saved_feedmultiply;
+int extrudemultiply = 100; //100->1 200->2
 int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
 bool volumetric_enabled = false;
 float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
@@ -305,7 +306,7 @@ int fanSpeed = 0;
 #ifdef SCARA
   float axis_scaling[3] = { 1, 1, 1 };    // Build size scaling, default to 1
   static float delta[3] = { 0, 0, 0 };		
-#endif
+#endif        
 
 bool cancel_heatup = false;
 
@@ -476,6 +477,8 @@ bool enquecommand(const char *cmd)
   return true;
 }
 
+
+
 void setup_killpin()
 {
   #if defined(KILL_PIN) && KILL_PIN > -1
@@ -898,7 +901,7 @@ bool code_seen(char code) {
   strchr_pointer = strchr(cmdbuffer[bufindr], code);
   return (strchr_pointer != NULL);  //Return True if a character was found
 }
-  
+
 #define DEFINE_PGM_READ_ANY(type, reader)       \
     static inline type pgm_read_any(const type *p)  \
     { return pgm_read_##reader##_near(p); }
@@ -929,7 +932,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
 
   static float x_home_pos(int extruder) {
     if (extruder == 0)
-      return base_home_pos(X_AXIS) + home_offset[X_AXIS];
+    return base_home_pos(X_AXIS) + home_offset[X_AXIS];
     else
       // In dual carriage mode the extruder offset provides an override of the
       // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
@@ -958,15 +961,15 @@ static void axis_is_at_home(int axis) {
     if (axis == X_AXIS) {
       if (active_extruder != 0) {
         current_position[X_AXIS] = x_home_pos(active_extruder);
-                 min_pos[X_AXIS] = X2_MIN_POS;
-                 max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
+        min_pos[X_AXIS] = X2_MIN_POS;
+        max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
         return;
       }
       else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
-        float xoff = home_offset[X_AXIS];
-        current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
-                 min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
-                 max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
+        current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
+        min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
+        max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
+                                max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
         return;
       }
     }
@@ -1020,189 +1023,178 @@ static void axis_is_at_home(int axis) {
 }
 
 /**
- * Some planner shorthand inline functions
+ * Shorthand to tell the planner our current position (in mm).
  */
-inline void line_to_current_position() {
-  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
-}
-inline void line_to_z(float zPosition) {
-  plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
-}
-inline void line_to_destination() {
-  plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
-}
 inline void sync_plan_position() {
   plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 }
 
 #ifdef ENABLE_AUTO_BED_LEVELING
+#ifdef AUTO_BED_LEVELING_GRID
 
-  #ifdef AUTO_BED_LEVELING_GRID
-
-    #ifndef DELTA
-
-      static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
-        vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
-        planeNormal.debug("planeNormal");
-        plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
-        //bedLevel.debug("bedLevel");
-
-        //plan_bed_level_matrix.debug("bed level before");
-        //vector_3 uncorrected_position = plan_get_position_mm();
-        //uncorrected_position.debug("position before");
-
-        vector_3 corrected_position = plan_get_position();
-        //corrected_position.debug("position after");
-        current_position[X_AXIS] = corrected_position.x;
-        current_position[Y_AXIS] = corrected_position.y;
-        current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
-
-        sync_plan_position();
-      }
-
-    #endif // !DELTA
+#ifndef DELTA
+  static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
+    vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
+    planeNormal.debug("planeNormal");
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+    //bedLevel.debug("bedLevel");
+
+    //plan_bed_level_matrix.debug("bed level before");
+    //vector_3 uncorrected_position = plan_get_position_mm();
+    //uncorrected_position.debug("position before");
+
+    vector_3 corrected_position = plan_get_position();
+    //corrected_position.debug("position after");
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
 
-  #else // !AUTO_BED_LEVELING_GRID
+    sync_plan_position();
+  }
+#endif
 
-    static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
+#else // not AUTO_BED_LEVELING_GRID
 
-      plan_bed_level_matrix.set_to_identity();
+static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
 
-      vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
-      vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
-      vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
-      vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
+    plan_bed_level_matrix.set_to_identity();
 
-      if (planeNormal.z < 0) {
-        planeNormal.x = -planeNormal.x;
-        planeNormal.y = -planeNormal.y;
-        planeNormal.z = -planeNormal.z;
-      }
+    vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
+    vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
+    vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
+    vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
 
-      plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
+    if (planeNormal.z < 0) {
+      planeNormal.x = -planeNormal.x;
+      planeNormal.y = -planeNormal.y;
+      planeNormal.z = -planeNormal.z;
+    }
 
-      vector_3 corrected_position = plan_get_position();
-      current_position[X_AXIS] = corrected_position.x;
-      current_position[Y_AXIS] = corrected_position.y;
-      current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
+    plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 
-      sync_plan_position();
-    }
+    vector_3 corrected_position = plan_get_position();
+    current_position[X_AXIS] = corrected_position.x;
+    current_position[Y_AXIS] = corrected_position.y;
+    current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
 
-  #endif // !AUTO_BED_LEVELING_GRID
+    sync_plan_position();
+}
 
-  static void run_z_probe() {
+#endif // AUTO_BED_LEVELING_GRID
 
-    #ifdef DELTA
+static void run_z_probe() {
+  #ifdef DELTA
     
-      float start_z = current_position[Z_AXIS];
-      long start_steps = st_get_position(Z_AXIS);
+    float start_z = current_position[Z_AXIS];
+    long start_steps = st_get_position(Z_AXIS);
+  
+    // move down slowly until you find the bed
+    feedrate = homing_feedrate[Z_AXIS] / 4;
+    destination[Z_AXIS] = -10;
+    prepare_move_raw();
+    st_synchronize();
+    endstops_hit_on_purpose();
     
-      // move down slowly until you find the bed
-      feedrate = homing_feedrate[Z_AXIS] / 4;
-      destination[Z_AXIS] = -10;
-      prepare_move_raw();
-      st_synchronize();
-      endstops_hit_on_purpose();
-      
-      // we have to let the planner know where we are right now as it is not where we said to go.
-      long stop_steps = st_get_position(Z_AXIS);
-      float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
-      current_position[Z_AXIS] = mm;
-      calculate_delta(current_position);
-      plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
-      
-    #else // !DELTA
+    // we have to let the planner know where we are right now as it is not where we said to go.
+    long stop_steps = st_get_position(Z_AXIS);
+    float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
+    current_position[Z_AXIS] = mm;
+    calculate_delta(current_position);
+    plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
+    
+  #else
 
-      plan_bed_level_matrix.set_to_identity();
-      feedrate = homing_feedrate[Z_AXIS];
+    plan_bed_level_matrix.set_to_identity();
+    feedrate = homing_feedrate[Z_AXIS];
 
-      // move down until you find the bed
-      float zPosition = -10;
-      line_to_z(zPosition);
-      st_synchronize();
+    // move down until you find the bed
+    float zPosition = -10;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
 
-      // we have to let the planner know where we are right now as it is not where we said to go.
-      zPosition = st_get_position_mm(Z_AXIS);
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+        // we have to let the planner know where we are right now as it is not where we said to go.
+    zPosition = st_get_position_mm(Z_AXIS);
+    plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
 
-      // move up the retract distance
-      zPosition += home_retract_mm(Z_AXIS);
-      line_to_z(zPosition);
-      st_synchronize();
-      endstops_hit_on_purpose();
+    // move up the retract distance
+    zPosition += home_retract_mm(Z_AXIS);
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+    endstops_hit_on_purpose();
 
-      // move back down slowly to find bed
-      if (homing_bump_divisor[Z_AXIS] >= 1)
-        feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
-      else {
-        feedrate = homing_feedrate[Z_AXIS] / 10;
-        SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
-      }
+    // move back down slowly to find bed
+    if (homing_bump_divisor[Z_AXIS] >= 1) {
+      feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
+    } 
+    else {
+      feedrate = homing_feedrate[Z_AXIS]/10;
+      SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
+    }
 
-      zPosition -= home_retract_mm(Z_AXIS) * 2;
-      line_to_z(zPosition);
-      st_synchronize();
-      endstops_hit_on_purpose();
+    zPosition -= home_retract_mm(Z_AXIS) * 2;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
+    endstops_hit_on_purpose();
 
-      current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
-      // make sure the planner knows where we are as it may be a bit different than we last said to move to
-      sync_plan_position();
-      
-    #endif // !DELTA
-  }
+    current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
+    // make sure the planner knows where we are as it may be a bit different than we last said to move to
+    sync_plan_position();
+    
+  #endif
+}
 
-  static void do_blocking_move_to(float x, float y, float z) {
+static void do_blocking_move_to(float x, float y, float z) {
     float oldFeedRate = feedrate;
 
-    #ifdef DELTA
+#ifdef DELTA
 
-      feedrate = XY_TRAVEL_SPEED;
-      
-      destination[X_AXIS] = x;
-      destination[Y_AXIS] = y;
-      destination[Z_AXIS] = z;
-      prepare_move_raw();
-      st_synchronize();
+    feedrate = XY_TRAVEL_SPEED;
+    
+    destination[X_AXIS] = x;
+    destination[Y_AXIS] = y;
+    destination[Z_AXIS] = z;
+    prepare_move_raw();
+    st_synchronize();
 
-    #else
+#else
 
-      feedrate = homing_feedrate[Z_AXIS];
+    feedrate = homing_feedrate[Z_AXIS];
 
-      current_position[Z_AXIS] = z;
-      line_to_current_position();
-      st_synchronize();
+    current_position[Z_AXIS] = z;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
 
-      feedrate = xy_travel_speed;
+    feedrate = xy_travel_speed;
 
-      current_position[X_AXIS] = x;
-      current_position[Y_AXIS] = y;
-      line_to_current_position();
-      st_synchronize();
+    current_position[X_AXIS] = x;
+    current_position[Y_AXIS] = y;
+    plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
+    st_synchronize();
 
-    #endif
+#endif
 
     feedrate = oldFeedRate;
-  }
+}
 
-  static void setup_for_endstop_move() {
+static void setup_for_endstop_move() {
     saved_feedrate = feedrate;
     saved_feedmultiply = feedmultiply;
     feedmultiply = 100;
     previous_millis_cmd = millis();
+
     enable_endstops(true);
-  }
+}
+
+static void clean_up_after_endstop_move() {
+#ifdef ENDSTOPS_ONLY_FOR_HOMING
+    enable_endstops(false);
+#endif
 
-  static void clean_up_after_endstop_move() {
-    #ifdef ENDSTOPS_ONLY_FOR_HOMING
-      enable_endstops(false);
-    #endif
     feedrate = saved_feedrate;
     feedmultiply = saved_feedmultiply;
     previous_millis_cmd = millis();
-  }
+}
 
-<<<<<<< HEAD
 static void engage_z_probe() {
   // Engage Z Servo endstop if enabled
   #ifdef SERVO_ENDSTOPS
@@ -1250,59 +1242,13 @@ static void engage_z_probe() {
             SERIAL_ERROR_START;
             SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
             LCD_ALERTMESSAGEPGM("Err: ZPROBE");
-=======
-  static void engage_z_probe() {
-
-    #ifdef SERVO_ENDSTOPS
-
-      // Engage Z Servo endstop if enabled
-      if (servo_endstops[Z_AXIS] >= 0) {
-        #if SERVO_LEVELING
-          servos[servo_endstops[Z_AXIS]].attach(0);
-        #endif
-        servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
-        #if SERVO_LEVELING
-          delay(PROBE_SERVO_DEACTIVATION_DELAY);
-          servos[servo_endstops[Z_AXIS]].detach();
-        #endif
-      }
-
-    #elif defined(Z_PROBE_ALLEN_KEY)
-
-      feedrate = homing_feedrate[X_AXIS];
-
-      // Move to the start position to initiate deployment
-      destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
-      destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
-      destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
-      prepare_move_raw();
-
-      // Home X to touch the belt
-      feedrate = homing_feedrate[X_AXIS]/10;
-      destination[X_AXIS] = 0;
-      prepare_move_raw();
-      
-      // Home Y for safety
-      feedrate = homing_feedrate[X_AXIS]/2;
-      destination[Y_AXIS] = 0;
-      prepare_move_raw();
-      
-      st_synchronize();
-      
-      bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
-      if (z_min_endstop) {
-        if (!Stopped) {
-          SERIAL_ERROR_START;
-          SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
-          LCD_ALERTMESSAGEPGM("Err: ZPROBE");
->>>>>>> MarlinFirmware/Development
         }
         Stop();
-      }
+    }
+  #endif
 
-    #endif // Z_PROBE_ALLEN_KEY
+}
 
-<<<<<<< HEAD
 static void retract_z_probe() {
   // Retract Z Servo endstop if enabled
   #ifdef SERVO_ENDSTOPS
@@ -1365,216 +1311,126 @@ static void retract_z_probe() {
             SERIAL_ERROR_START;
             SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
             LCD_ALERTMESSAGEPGM("Err: ZPROBE");
-=======
-  }
-
-  static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) {
-
-    #ifdef SERVO_ENDSTOPS
-
-      // Retract Z Servo endstop if enabled
-      if (servo_endstops[Z_AXIS] >= 0) {
-
-        if (z_after > 0) {
-          do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after);
-          st_synchronize();
->>>>>>> MarlinFirmware/Development
-        }
-      
-        #if SERVO_LEVELING
-          servos[servo_endstops[Z_AXIS]].attach(0);
-        #endif
-
-        servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
-
-        #if SERVO_LEVELING
-          delay(PROBE_SERVO_DEACTIVATION_DELAY);
-          servos[servo_endstops[Z_AXIS]].detach();
-        #endif
-      }
-
-    #elif defined(Z_PROBE_ALLEN_KEY)
-
-      // Move up for safety
-      feedrate = homing_feedrate[X_AXIS];
-      destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
-      prepare_move_raw();
-
-      // Move to the start position to initiate retraction
-      destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
-      destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
-      destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
-      prepare_move_raw();
-
-      // Move the nozzle down to push the probe into retracted position
-      feedrate = homing_feedrate[Z_AXIS]/10;
-      destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
-      prepare_move_raw();
-      
-      // Move up for safety
-      feedrate = homing_feedrate[Z_AXIS]/2;
-      destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
-      prepare_move_raw();
-      
-      // Home XY for safety
-      feedrate = homing_feedrate[X_AXIS]/2;
-      destination[X_AXIS] = 0;
-      destination[Y_AXIS] = 0;
-      prepare_move_raw();
-      
-      st_synchronize();
-      
-      bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
-      if (!z_min_endstop) {
-        if (!Stopped) {
-          SERIAL_ERROR_START;
-          SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
-          LCD_ALERTMESSAGEPGM("Err: ZPROBE");
         }
         Stop();
-      }
-
-    #endif
+    }
+  #endif
 
-  }
+}
 
-  enum ProbeAction {
-    ProbeStay             = 0,
-    ProbeEngage           = BIT(0),
-    ProbeRetract          = BIT(1),
-    ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
-  };
-
-  // Probe bed height at position (x,y), returns the measured z value
-  static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
-    // move to right place
-    do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
-    do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
-
-    #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
-      if (retract_action & ProbeEngage) engage_z_probe();
-    #endif
+enum ProbeAction {
+  ProbeStay             = 0,
+  ProbeEngage           = BIT(0),
+  ProbeRetract          = BIT(1),
+  ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
+};
+
+/// Probe bed height at position (x,y), returns the measured z value
+static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
+  // move to right place
+  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
+  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
+
+  #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
+    if (retract_action & ProbeEngage) engage_z_probe();
+  #endif
 
-    run_z_probe();
-    float measured_z = current_position[Z_AXIS];
+  run_z_probe();
+  float measured_z = current_position[Z_AXIS];
 
-    #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
-      if (retract_action & ProbeRetract) retract_z_probe(z_before);
-    #endif
+  #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
+    if (retract_action & ProbeRetract) retract_z_probe();
+  #endif
 
-    if (verbose_level > 2) {
-      SERIAL_PROTOCOLPGM(MSG_BED);
-      SERIAL_PROTOCOLPGM(" X: ");
-      SERIAL_PROTOCOL_F(x, 3);
-      SERIAL_PROTOCOLPGM(" Y: ");
-      SERIAL_PROTOCOL_F(y, 3);
-      SERIAL_PROTOCOLPGM(" Z: ");
-      SERIAL_PROTOCOL_F(measured_z, 3);
-      SERIAL_EOL;
-    }
-    return measured_z;
+  if (verbose_level > 2) {
+    SERIAL_PROTOCOLPGM(MSG_BED);
+    SERIAL_PROTOCOLPGM(" X: ");
+    SERIAL_PROTOCOL_F(x, 3);
+    SERIAL_PROTOCOLPGM(" Y: ");
+    SERIAL_PROTOCOL_F(y, 3);
+    SERIAL_PROTOCOLPGM(" Z: ");
+    SERIAL_PROTOCOL_F(measured_z, 3);
+    SERIAL_EOL;
   }
+  return measured_z;
+}
 
-  #ifdef DELTA
-
-    /**
-     * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
-     */
+#ifdef DELTA
+static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
+  if (bed_level[x][y] != 0.0) {
+    return;  // Don't overwrite good values.
+  }
+  float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y];  // Left to right.
+  float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2];  // Front to back.
+  float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2];  // Diagonal.
+  float median = c;  // Median is robust (ignores outliers).
+  if (a < b) {
+    if (b < c) median = b;
+    if (c < a) median = a;
+  } else {  // b <= a
+    if (c < b) median = b;
+    if (a < c) median = a;
+  }
+  bed_level[x][y] = median;
+}
 
-    static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
-      if (bed_level[x][y] != 0.0) {
-        return;  // Don't overwrite good values.
-      }
-      float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y];  // Left to right.
-      float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2];  // Front to back.
-      float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2];  // Diagonal.
-      float median = c;  // Median is robust (ignores outliers).
-      if (a < b) {
-        if (b < c) median = b;
-        if (c < a) median = a;
-      } else {  // b <= a
-        if (c < b) median = b;
-        if (a < c) median = a;
-      }
-      bed_level[x][y] = median;
+// Fill in the unprobed points (corners of circular print surface)
+// using linear extrapolation, away from the center.
+static void extrapolate_unprobed_bed_level() {
+  int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
+  for (int y = 0; y <= half; y++) {
+    for (int x = 0; x <= half; x++) {
+      if (x + y < 3) continue;
+      extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
+      extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
+      extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
+      extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
     }
+  }
+}
 
-    // Fill in the unprobed points (corners of circular print surface)
-    // using linear extrapolation, away from the center.
-    static void extrapolate_unprobed_bed_level() {
-      int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
-      for (int y = 0; y <= half; y++) {
-        for (int x = 0; x <= half; x++) {
-          if (x + y < 3) continue;
-          extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
-          extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
-          extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
-          extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
-        }
-      }
-    }
-
-    // Print calibration results for plotting or manual frame adjustment.
-    static void print_bed_level() {
-      for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
-        for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
-          SERIAL_PROTOCOL_F(bed_level[x][y], 2);
-          SERIAL_PROTOCOLPGM(" ");
-        }
-        SERIAL_ECHOLN("");
-      }
+// Print calibration results for plotting or manual frame adjustment.
+static void print_bed_level() {
+  for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
+    for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
+      SERIAL_PROTOCOL_F(bed_level[x][y], 2);
+      SERIAL_PROTOCOLPGM(" ");
     }
+    SERIAL_ECHOLN("");
+  }
+}
 
-    // Reset calibration results to zero.
-    void reset_bed_level() {
-      for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
-        for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
-          bed_level[x][y] = 0.0;
-        }
-      }
+// Reset calibration results to zero.
+void reset_bed_level() {
+  for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
+    for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
+      bed_level[x][y] = 0.0;
     }
+  }
+}
 
-  #endif // DELTA
+#endif // DELTA
 
 #endif // ENABLE_AUTO_BED_LEVELING
 
 static void homeaxis(int axis) {
-  #define HOMEAXIS_DO(LETTER) \
-    ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
-
-  if (axis == X_AXIS ? HOMEAXIS_DO(X) :
-      axis == Y_AXIS ? HOMEAXIS_DO(Y) :
-      axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
-
-    int axis_home_dir;
-
-    #ifdef DUAL_X_CARRIAGE
-      if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
-    #else
-      axis_home_dir = home_dir(axis);
-    #endif
+#define HOMEAXIS_DO(LETTER) \
+  ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
+
+  if (axis==X_AXIS ? HOMEAXIS_DO(X) :
+      axis==Y_AXIS ? HOMEAXIS_DO(Y) :
+      axis==Z_AXIS ? HOMEAXIS_DO(Z) :
+      0) {
+    int axis_home_dir = home_dir(axis);
+#ifdef DUAL_X_CARRIAGE
+    if (axis == X_AXIS)
+      axis_home_dir = x_home_dir(active_extruder);
+#endif
 
     current_position[axis] = 0;
     sync_plan_position();
 
-    #ifndef Z_PROBE_SLED
-      // Engage Servo endstop if enabled
-      #ifdef SERVO_ENDSTOPS
-        #if SERVO_LEVELING
-          if (axis == Z_AXIS) {
-            engage_z_probe();
-          }
-          else
-        #endif // SERVO_LEVELING
-
-        if (servo_endstops[axis] > -1)
-          servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
 
-      #endif // SERVO_ENDSTOPS
-
-    #endif // Z_PROBE_SLED
-
-<<<<<<< HEAD
 #ifndef Z_PROBE_SLED
     // Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
     #ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
@@ -1589,33 +1445,33 @@ static void homeaxis(int axis) {
       }
     #endif
 #endif // Z_PROBE_SLED
-=======
->>>>>>> MarlinFirmware/Development
     #ifdef Z_DUAL_ENDSTOPS
-      if (axis == Z_AXIS) In_Homing_Process(true);
+      if (axis==Z_AXIS) In_Homing_Process(true);
     #endif
-
     destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
     feedrate = homing_feedrate[axis];
-    line_to_destination();
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
     st_synchronize();
 
     current_position[axis] = 0;
     sync_plan_position();
     destination[axis] = -home_retract_mm(axis) * axis_home_dir;
-    line_to_destination();
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
     st_synchronize();
 
-    destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
+    destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
 
     if (homing_bump_divisor[axis] >= 1)
-      feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
-    else {
-      feedrate = homing_feedrate[axis] / 10;
-      SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
+    {
+        feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
+    } 
+    else
+    {
+        feedrate = homing_feedrate[axis]/10;
+        SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
     }
 
-    line_to_destination();
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
     st_synchronize();
     #ifdef Z_DUAL_ENDSTOPS
       if (axis==Z_AXIS)
@@ -1630,7 +1486,7 @@ static void homeaxis(int axis) {
           destination[axis] = fabs(z_endstop_adj);
           if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);        
         }
-        line_to_destination();
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
         st_synchronize();
         Lock_z_motor(false);
         Lock_z2_motor(false);
@@ -1643,7 +1499,7 @@ static void homeaxis(int axis) {
     if (endstop_adj[axis] * axis_home_dir < 0) {
       sync_plan_position();
       destination[axis] = endstop_adj[axis];
-      line_to_destination();
+      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
       st_synchronize();
     }
 #endif
@@ -1688,7 +1544,7 @@ void refresh_cmd_timeout(void)
       }
       plan_set_e_position(current_position[E_AXIS]);
       float oldFeedrate = feedrate;
-      feedrate = retract_feedrate * 60;
+      feedrate=retract_feedrate*60;
       retracted[active_extruder]=true;
       prepare_move();
       if(retract_zlift > 0.01) {
@@ -1724,8 +1580,8 @@ void refresh_cmd_timeout(void)
       }
       plan_set_e_position(current_position[E_AXIS]);
       float oldFeedrate = feedrate;
-      feedrate = retract_recover_feedrate * 60;
-      retracted[active_extruder] = false;
+      feedrate=retract_recover_feedrate*60;
+      retracted[active_extruder]=false;
       prepare_move();
       feedrate = oldFeedrate;
     }
@@ -1879,16 +1735,17 @@ inline void gcode_G4() {
  */
 inline void gcode_G28() {
   #ifdef ENABLE_AUTO_BED_LEVELING
-    plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
     #ifdef DELTA
       reset_bed_level();
+    #else
+      plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
     #endif
   #endif
 
   #if defined(MESH_BED_LEVELING)
     uint8_t mbl_was_active = mbl.active;
     mbl.active = 0;
-  #endif
+  #endif  // MESH_BED_LEVELING
 
   saved_feedrate = feedrate;
   saved_feedmultiply = feedmultiply;
@@ -1911,7 +1768,7 @@ inline void gcode_G28() {
 
     for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
     feedrate = 1.732 * homing_feedrate[X_AXIS];
-    line_to_destination();
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
     st_synchronize();
     endstops_hit_on_purpose();
 
@@ -1959,7 +1816,7 @@ inline void gcode_G28() {
         } else {
           feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
         }
-        line_to_destination();
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
         st_synchronize();
 
         axis_is_at_home(X_AXIS);
@@ -1967,7 +1824,7 @@ inline void gcode_G28() {
         sync_plan_position();
         destination[X_AXIS] = current_position[X_AXIS];
         destination[Y_AXIS] = current_position[Y_AXIS];
-        line_to_destination();
+        plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
         feedrate = 0.0;
         st_synchronize();
         endstops_hit_on_purpose();
@@ -2035,7 +1892,7 @@ inline void gcode_G28() {
             #ifndef Z_PROBE_AND_ENDSTOP
             destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
             feedrate = max_feedrate[Z_AXIS];
-            line_to_destination();
+            plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
             st_synchronize();
             #endif
           #endif
@@ -2048,11 +1905,11 @@ inline void gcode_G28() {
           destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
           destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
           destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
-          feedrate = XY_TRAVEL_SPEED;
+          feedrate = XY_TRAVEL_SPEED / 60;
           current_position[Z_AXIS] = 0;
 
           sync_plan_position();
-          line_to_destination();
+          plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
           st_synchronize();
           current_position[X_AXIS] = destination[X_AXIS];
           current_position[Y_AXIS] = destination[Y_AXIS];
@@ -2074,7 +1931,7 @@ inline void gcode_G28() {
               plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
               destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);    // Set destination away from bed
               feedrate = max_feedrate[Z_AXIS];
-              line_to_destination();
+              plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
               st_synchronize();
               HOMEAXIS(Z);
             }
@@ -2127,7 +1984,7 @@ inline void gcode_G28() {
       destination[Z_AXIS] = current_position[Z_AXIS];
       destination[E_AXIS] = current_position[E_AXIS];
       feedrate = homing_feedrate[X_AXIS];
-      line_to_destination();
+      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
       st_synchronize();
       current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
       sync_plan_position();
@@ -2141,19 +1998,6 @@ inline void gcode_G28() {
   endstops_hit_on_purpose();
 }
 
-#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
-
-  // Check for known positions in X and Y
-  inline bool can_run_bed_leveling() {
-  	if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
-    LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
-    SERIAL_ECHO_START;
-    SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
-    return false;
-  }
-
-#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
-
 #ifdef MESH_BED_LEVELING
 
   /**
@@ -2168,10 +2012,6 @@ inline void gcode_G28() {
    *
    */
   inline void gcode_G29() {
-
-    // Prevent leveling without first homing in X and Y
-    if (!can_run_bed_leveling()) return;
-
     static int probe_point = -1;
     int state = 0;
     if (code_seen('S') || code_seen('s')) {
@@ -2288,8 +2128,13 @@ inline void gcode_G28() {
    */
   inline void gcode_G29() {
 
-    // Prevent leveling without first homing in X and Y
-    if (!can_run_bed_leveling()) return;
+    // Prevent user from running a G29 without first homing in X and Y
+    if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
+      LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
+      SERIAL_ECHO_START;
+      SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
+      return;
+    }
 
     int verbose_level = 1;
 
@@ -2371,15 +2216,16 @@ inline void gcode_G28() {
 
     st_synchronize();
 
-    if (!dryrun) {
-      // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
-      plan_bed_level_matrix.set_to_identity();
-
+    if (!dryrun)
+    {
       #ifdef DELTA
         reset_bed_level();
       #else //!DELTA
+
+        // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
         //vector_3 corrected_position = plan_get_position_mm();
         //corrected_position.debug("position before G29");
+        plan_bed_level_matrix.set_to_identity();
         vector_3 uncorrected_position = plan_get_position();
         //uncorrected_position.debug("position during G29");
         current_position[X_AXIS] = uncorrected_position.x;
@@ -2387,7 +2233,7 @@ inline void gcode_G28() {
         current_position[Z_AXIS] = uncorrected_position.z;
         sync_plan_position();
 
-      #endif // !DELTA
+      #endif
     }
     
     setup_for_endstop_move();
@@ -2448,12 +2294,13 @@ inline void gcode_G28() {
 
           // raise extruder
           float measured_z,
-                z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
+                z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
 
           #ifdef DELTA
             // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
             float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
-            if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
+            if (distance_from_center > DELTA_PROBABLE_RADIUS)
+              continue;
           #endif //DELTA
 
           // Enhanced G29 - Do not retract servo between probes
@@ -2481,11 +2328,6 @@ inline void gcode_G28() {
           #endif
 
           probePointCounter++;
-
-          manage_heater();
-          manage_inactivity();
-          lcd_update();
-
         } //xProbe
       } //yProbe
 
@@ -2572,14 +2414,16 @@ inline void gcode_G28() {
       if (verbose_level > 0)
         plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
 
-      if (!dryrun) {
-        // Correct the Z height difference from z-probe position and hotend tip position.
-        // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
-        // When the bed is uneven, this height must be corrected.
-        float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
-              y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
-              z_tmp = current_position[Z_AXIS],
-              real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
+      // Correct the Z height difference from z-probe position and hotend tip position.
+      // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
+      // When the bed is uneven, this height must be corrected.
+      if (!dryrun)
+      {
+        float x_tmp, y_tmp, z_tmp, real_z;
+        real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
+        x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
+        y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+        z_tmp = current_position[Z_AXIS];
 
         apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
         current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
@@ -3947,7 +3791,7 @@ inline void gcode_M221() {
       extruder_multiply[tmp_extruder] = sval;
     }
     else {
-      extruder_multiply[active_extruder] = sval;
+      extrudemultiply = sval;
     }
   }
 }
@@ -4384,7 +4228,7 @@ inline void gcode_M400() { st_synchronize(); }
     //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
     //SERIAL_PROTOCOL(filament_width_meas);
     //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
-    //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
+    //SERIAL_PROTOCOL(extrudemultiply);
   }
 
   /**
@@ -4857,14 +4701,18 @@ void process_commands() {
       gcode_G28();
       break;
 
-    #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
-      case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+    #if defined(MESH_BED_LEVELING)
+      case 29: // G29 Handle mesh based leveling
         gcode_G29();
         break;
     #endif
 
     #ifdef ENABLE_AUTO_BED_LEVELING
 
+      case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
+        gcode_G29();
+        break;
+
       #ifndef Z_PROBE_SLED
 
         case 30: // G30 Single Z Probe
@@ -5559,72 +5407,69 @@ void prepare_move()
   
   #ifdef SCARA //for now same as delta-code
 
-    float difference[NUM_AXIS];
-    for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
-
-    float cartesian_mm = sqrt(  sq(difference[X_AXIS]) +
-                                sq(difference[Y_AXIS]) +
-                                sq(difference[Z_AXIS]));
-    if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
-    if (cartesian_mm < 0.000001) { return; }
-    float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
-    int steps = max(1, int(scara_segments_per_second * seconds));
-
-    //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
-    //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
-    //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
-
-    for (int s = 1; s <= steps; s++) {
-      float fraction = float(s) / float(steps);
-      for(int8_t i = 0; i < NUM_AXIS; i++) {
-        destination[i] = current_position[i] + difference[i] * fraction;
-      }
-  
-      calculate_delta(destination);
-      //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
-      //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
-      //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
-      //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
-      //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
-      //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
-
-      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
-        destination[E_AXIS], feedrate*feedmultiply/60/100.0,
-        active_extruder);
-    }
+float difference[NUM_AXIS];
+for (int8_t i=0; i < NUM_AXIS; i++) {
+  difference[i] = destination[i] - current_position[i];
+}
 
-  #endif // SCARA
-  
-  #ifdef DELTA
+float cartesian_mm = sqrt(  sq(difference[X_AXIS]) +
+              sq(difference[Y_AXIS]) +
+              sq(difference[Z_AXIS]));
+if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
+if (cartesian_mm < 0.000001) { return; }
+float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
+int steps = max(1, int(scara_segments_per_second * seconds));
+ //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
+ //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
+ //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
+for (int s = 1; s <= steps; s++) {
+  float fraction = float(s) / float(steps);
+  for(int8_t i=0; i < NUM_AXIS; i++) {
+    destination[i] = current_position[i] + difference[i] * fraction;
+  }
 
-    float difference[NUM_AXIS];
-    for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
-
-    float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
-                              sq(difference[Y_AXIS]) +
-                              sq(difference[Z_AXIS]));
-    if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
-    if (cartesian_mm < 0.000001) return;
-    float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
-    int steps = max(1, int(delta_segments_per_second * seconds));
-
-    // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
-    // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
-    // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
-
-    for (int s = 1; s <= steps; s++) {
-      float fraction = float(s) / float(steps);
-      for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
-      calculate_delta(destination);
-      #ifdef ENABLE_AUTO_BED_LEVELING
-        adjust_delta(destination);
-      #endif
-      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
-                       destination[E_AXIS], feedrate*feedmultiply/60/100.0,
-                       active_extruder);
+  
+  calculate_delta(destination);
+         //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
+         //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
+         //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
+         //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
+         //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
+         //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
+         
+  plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
+  destination[E_AXIS], feedrate*feedmultiply/60/100.0,
+  active_extruder);
+}
+#endif // SCARA
+  
+#ifdef DELTA
+  float difference[NUM_AXIS];
+  for (int8_t i=0; i < NUM_AXIS; i++) {
+    difference[i] = destination[i] - current_position[i];
+  }
+  float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
+                            sq(difference[Y_AXIS]) +
+                            sq(difference[Z_AXIS]));
+  if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
+  if (cartesian_mm < 0.000001) { return; }
+  float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
+  int steps = max(1, int(delta_segments_per_second * seconds));
+  // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
+  // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
+  // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
+  for (int s = 1; s <= steps; s++) {
+    float fraction = float(s) / float(steps);
+    for(int8_t i=0; i < NUM_AXIS; i++) {
+      destination[i] = current_position[i] + difference[i] * fraction;
     }
-
-  #endif // DELTA
+    calculate_delta(destination);
+    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
+                     destination[E_AXIS], feedrate*feedmultiply/60/100.0,
+                     active_extruder);
+  }
+  
+#endif // DELTA
 
 #ifdef DUAL_X_CARRIAGE
   if (active_extruder_parked)
@@ -5670,13 +5515,13 @@ void prepare_move()
 #if ! (defined DELTA || defined SCARA)
   // Do not use feedmultiply for E or Z only moves
   if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
-    line_to_destination();
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
   } else {
 #if defined(MESH_BED_LEVELING)
-    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
+    mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
     return;
 #else
-    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
+    plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
 #endif  // MESH_BED_LEVELING
   }
 #endif // !(DELTA || SCARA)
diff --git a/Marlin/dogm_lcd_implementation.h b/Marlin/dogm_lcd_implementation.h
index 63e99bd3aa988ad878894a637a82e213237ca77f..89cd5e835c4d298cf989a756ea514ccdcb5ecad2 100644
--- a/Marlin/dogm_lcd_implementation.h
+++ b/Marlin/dogm_lcd_implementation.h
@@ -369,7 +369,7 @@ static void lcd_implementation_status_screen() {
       lcd_printPGM(PSTR("dia:"));
       lcd_print(ftostr12ns(filament_width_meas));
       lcd_printPGM(PSTR(" factor:"));
-      lcd_print(itostr3(volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
+      lcd_print(itostr3(extrudemultiply));
       lcd_print('%');
     }
   #endif
diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index d98ef63d4dfa4958baf2eca9840690ce103f367f..786527d0d70ecfcee73ed8afa1c1bfb23a0a26fd 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -545,7 +545,7 @@ float junction_deviation = 0.1;
   block->steps[Z_AXIS] = labs(dz);
   block->steps[E_AXIS] = labs(de);
   block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
-  block->steps[E_AXIS] *= extruder_multiply[active_extruder];
+  block->steps[E_AXIS] *= extrudemultiply;
   block->steps[E_AXIS] /= 100;
   block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
 
@@ -679,7 +679,7 @@ float junction_deviation = 0.1;
     delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
   #endif
   delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
-  delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extruder_multiply[active_extruder] / 100.0;
+  delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0;
 
   if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
     block->millimeters = fabs(delta_mm[E_AXIS]);
diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp
index d38474bafd8ce74306b51a33a4b40fff1b3245a6..73c23ae9de17569131f2a186c679cb63cebab1e2 100644
--- a/Marlin/stepper.cpp
+++ b/Marlin/stepper.cpp
@@ -515,36 +515,31 @@ ISR(TIMER1_COMPA_vect) {
     }
 
     if (TEST(out_bits, Z_AXIS)) {   // -direction
-
       Z_APPLY_DIR(INVERT_Z_DIR,0);
       count_direction[Z_AXIS] = -1;
-
-      if (check_endstops) {
-
-        #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
-
-          #ifdef Z_DUAL_ENDSTOPS
-
-            bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
-                z2_min_endstop =
-                  #if defined(Z2_MIN_PIN) && Z2_MIN_PIN >= 0
-                    READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
-                  #else
-                    z_min_endstop
-                  #endif
-                ;
-
-            bool z_min_both = z_min_endstop && old_z_min_endstop,
-                z2_min_both = z2_min_endstop && old_z2_min_endstop;
-            if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
+      if (check_endstops) 
+      {
+        #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
+          #ifndef Z_DUAL_ENDSTOPS
+            UPDATE_ENDSTOP(z, Z, min, MIN);
+          #else
+            bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
+            #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
+              bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
+            #else
+              bool z2_min_endstop=z_min_endstop;
+            #endif
+            if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
+            {
               endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
-              endstop_z_hit = true;
-              if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
+              endstop_z_hit=true;
+              if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
+              {
                 step_events_completed = current_block->step_event_count;
+              } 
             }
             old_z_min_endstop = z_min_endstop;
             old_z2_min_endstop = z2_min_endstop;
-<<<<<<< HEAD
           #endif
         #endif
 
@@ -561,55 +556,37 @@ ISR(TIMER1_COMPA_vect) {
           old_z_probe_endstop = z_probe_endstop;
         #endif
       }
-=======
-
-          #else // !Z_DUAL_ENDSTOPS
-
-            UPDATE_ENDSTOP(z, Z, min, MIN);
-
-          #endif // !Z_DUAL_ENDSTOPS
-
-        #endif // Z_MIN_PIN
-
-      } // check_endstops
-
->>>>>>> MarlinFirmware/Development
     }
     else { // +direction
-
       Z_APPLY_DIR(!INVERT_Z_DIR,0);
       count_direction[Z_AXIS] = 1;
-
       if (check_endstops) {
-
         #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
-
-          #ifdef Z_DUAL_ENDSTOPS
-
-            bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
-                z2_max_endstop =
-                  #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
-                    READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
-                  #else
-                    z_max_endstop
-                  #endif
-                ;
-
-            bool z_max_both = z_max_endstop && old_z_max_endstop,
-                z2_max_both = z2_max_endstop && old_z2_max_endstop;
-            if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
+          #ifndef Z_DUAL_ENDSTOPS
+            UPDATE_ENDSTOP(z, Z, max, MAX);
+          #else
+            bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
+            #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
+              bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
+            #else
+              bool z2_max_endstop=z_max_endstop;
+            #endif
+            if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
+            {
               endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
-              endstop_z_hit = true;
+              endstop_z_hit=true;
 
-             // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
-             // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
+//              if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
+//              if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
 
-              if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
+            
+              if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
+              {
                 step_events_completed = current_block->step_event_count;
+              } 
             }
             old_z_max_endstop = z_max_endstop;
             old_z2_max_endstop = z2_max_endstop;
-<<<<<<< HEAD
           #endif
         #endif
 
@@ -626,34 +603,20 @@ ISR(TIMER1_COMPA_vect) {
         #endif
       }
     }
-=======
-
-          #else // !Z_DUAL_ENDSTOPS
-
-            UPDATE_ENDSTOP(z, Z, max, MAX);
-
-          #endif // !Z_DUAL_ENDSTOPS
-
-        #endif // Z_MAX_PIN
-
-      } // check_endstops
-
-    } // +direction
->>>>>>> MarlinFirmware/Development
 
     #ifndef ADVANCE
       if (TEST(out_bits, E_AXIS)) {  // -direction
         REV_E_DIR();
-        count_direction[E_AXIS] = -1;
+        count_direction[E_AXIS]=-1;
       }
       else { // +direction
         NORM_E_DIR();
-        count_direction[E_AXIS] = 1;
+        count_direction[E_AXIS]=1;
       }
     #endif //!ADVANCE
 
     // Take multiple steps per interrupt (For high speed moves)
-    for (int8_t i = 0; i < step_loops; i++) {
+    for (int8_t i=0; i < step_loops; i++) {
       #ifndef AT90USB
         MSerial.checkRx(); // Check for serial chars.
       #endif
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index 58a66973f4f84bc5fe87a8f5eaa23967e5fc1c48..c85f8e14dfbc577a84449e7adcff887262f05416 100644
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -485,7 +485,7 @@ static void lcd_tune_menu() {
     MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
   #endif
   MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
-  MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiply[active_extruder], 10, 999);
+  MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);
   MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F0, &extruder_multiply[0], 10, 999);
   #if TEMP_SENSOR_1 != 0
     MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F1, &extruder_multiply[1], 10, 999);
diff --git a/Marlin/ultralcd_implementation_hitachi_HD44780.h b/Marlin/ultralcd_implementation_hitachi_HD44780.h
index c21785ed25eed729e6130b23cc640c508fb18a43..aaa55800acb8e2d4a9de12a8605d3eca69782fa0 100644
--- a/Marlin/ultralcd_implementation_hitachi_HD44780.h
+++ b/Marlin/ultralcd_implementation_hitachi_HD44780.h
@@ -624,7 +624,7 @@ static void lcd_implementation_status_screen()
 
 static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char post_char) {
   char c;
-  uint8_t n = LCD_WIDTH - 2;
+  uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2);
   lcd.setCursor(0, row);
   lcd.print(sel ? pre_char : ' ');
   while ((c = pgm_read_byte(pstr)) && n > 0) {
@@ -633,11 +633,12 @@ static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const cha
   }
   while(n--) lcd.print(' ');
   lcd.print(post_char);
+  lcd.print(' ');
 }
 
 static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char* data) {
   char c;
-  uint8_t n = LCD_WIDTH - 2 - lcd_strlen(data);
+  uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2) - lcd_strlen(data);
   lcd.setCursor(0, row);
   lcd.print(sel ? pre_char : ' ');
   while ((c = pgm_read_byte(pstr)) && n > 0) {
@@ -650,7 +651,7 @@ static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t r
 }
 static void lcd_implementation_drawmenu_setting_edit_generic_P(bool sel, uint8_t row, const char* pstr, char pre_char, const char* data) {
   char c;
-  uint8_t n = LCD_WIDTH - 2 - lcd_strlen_P(data);
+  uint8_t n = LCD_WIDTH - 1 - (LCD_WIDTH < 20 ? 1 : 2) - lcd_strlen_P(data);
   lcd.setCursor(0, row);
   lcd.print(sel ? pre_char : ' ');
   while ((c = pgm_read_byte(pstr)) && n > 0) {
@@ -687,11 +688,11 @@ void lcd_implementation_drawedit(const char* pstr, char* value) {
   lcd.setCursor(1, 1);
   lcd_printPGM(pstr);
   lcd.print(':');
-  lcd.setCursor(LCD_WIDTH - lcd_strlen(value), 1);
+  lcd.setCursor(LCD_WIDTH - (LCD_WIDTH < 20 ? 0 : 1) - lcd_strlen(value), 1);
   lcd_print(value);
 }
 
-static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat, char post_char) {
+static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat) {
   char c;
   uint8_t n = LCD_WIDTH - concat;
   lcd.setCursor(0, row);
@@ -705,15 +706,14 @@ static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* ps
     filename++;
   }
   while (n--) lcd.print(' ');
-  lcd.print(post_char);
 }
 
 static void lcd_implementation_drawmenu_sdfile(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) {
-  lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, ' ');
+  lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 1);
 }
 
 static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) {
-  lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, LCD_STR_FOLDER[0]);
+  lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2);
 }
 
 #define lcd_implementation_drawmenu_back(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_STR_UPLEVEL[0], LCD_STR_UPLEVEL[0])