diff --git a/Marlin/src/module/planner.cpp b/Marlin/src/module/planner.cpp
index bc0ffa94179f4d798c56323c6d50e768524b0d59..44065e82faa861411a0decc49c1cca9c37a03ca7 100644
--- a/Marlin/src/module/planner.cpp
+++ b/Marlin/src/module/planner.cpp
@@ -698,35 +698,69 @@ void Planner::calculate_volumetric_multipliers() {
#endif // PLANNER_LEVELING
/**
- * Planner::_buffer_steps
+ * Planner::_buffer_line
*
- * Add a new linear movement to the buffer (in terms of steps).
+ * Add a new linear movement to the buffer in axis units.
*
- * target - target position in steps units
+ * Leveling and kinematics should be applied ahead of calling this.
+ *
+ * a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
-void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder) {
+void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
+
+ // The target position of the tool in absolute steps
+ // Calculate target position in absolute steps
+ //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
+ const long target[XYZE] = {
+ LROUND(a * axis_steps_per_mm[X_AXIS]),
+ LROUND(b * axis_steps_per_mm[Y_AXIS]),
+ LROUND(c * axis_steps_per_mm[Z_AXIS]),
+ LROUND(e * axis_steps_per_mm[E_AXIS_N])
+ };
+
+ // When changing extruders recalculate steps corresponding to the E position
+ #if ENABLED(DISTINCT_E_FACTORS)
+ if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
+ position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
+ last_extruder = extruder;
+ }
+ #endif
const int32_t da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS];
- int32_t de = target[E_AXIS] - position[E_AXIS];
-
- /* <-- add a slash to enable
- SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s);
- SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
+ /*
+ SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
+ SERIAL_CHAR(' ');
+ #if IS_KINEMATIC
+ SERIAL_ECHOPAIR("A:", a);
+ SERIAL_ECHOPAIR(" (", da);
+ SERIAL_ECHOPAIR(") B:", b);
+ #else
+ SERIAL_ECHOPAIR("X:", a);
SERIAL_ECHOPAIR(" (", da);
- SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
- SERIAL_ECHOPAIR(" (", db);
- SERIAL_ECHOLNPGM(" steps) C:", target[C_AXIS]);
- SERIAL_ECHOPAIR(" (", dc);
- SERIAL_ECHOLNPGM(" steps) E:", target[E_AXIS]);
- SERIAL_ECHOPAIR(" (", de);
- SERIAL_ECHOLNPGM(" steps)");
+ SERIAL_ECHOPAIR(") Y:", b);
+ #endif
+ SERIAL_ECHOPAIR(" (", db);
+ #if ENABLED(DELTA)
+ SERIAL_ECHOPAIR(") C:", c);
+ #else
+ SERIAL_ECHOPAIR(") Z:", c);
+ #endif
+ SERIAL_ECHOPAIR(" (", dc);
+ SERIAL_CHAR(')');
+ SERIAL_EOL();
//*/
+ // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
+ if (DEBUGGING(DRYRUN))
+ position[E_AXIS] = target[E_AXIS];
+
+ int32_t de = target[E_AXIS] - position[E_AXIS];
+
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
@@ -1033,7 +1067,6 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
// Segment time im micro seconds
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
#endif
-
#if ENABLED(SLOWDOWN)
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
if (segment_time_us < min_segment_time_us) {
@@ -1227,12 +1260,12 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) {
+ if (moves_queued() && !UNEAR_ZERO(previous_nominal_speed)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
+ const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
+ - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
+ - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed, block->nominal_speed);
@@ -1272,24 +1305,25 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
}
}
- if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
+ if (moves_queued > 1 && !UNEAR_ZERO(previous_nominal_speed)) {
// Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
- const bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
- const float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
- vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
+ vmax_junction = min(block->nominal_speed, previous_nominal_speed);
+
+ const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
+
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1;
limited = 0;
// Now limit the jerk in all axes.
LOOP_XYZE(axis) {
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
- float v_exit = previous_speed[axis], v_entry = current_speed[axis];
- if (prev_speed_larger) v_exit *= smaller_speed_factor;
+ float v_exit = previous_speed[axis] * smaller_speed_factor,
+ v_entry = current_speed[axis];
if (limited) {
v_exit *= v_factor;
v_entry *= v_factor;
@@ -1384,79 +1418,9 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
recalculate();
-} // _buffer_steps()
-
-/**
- * Planner::_buffer_line
- *
- * Add a new linear movement to the buffer in axis units.
- *
- * Leveling and kinematics should be applied ahead of calling this.
- *
- * a,b,c,e - target positions in mm and/or degrees
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- */
-void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
- // When changing extruders recalculate steps corresponding to the E position
- #if ENABLED(DISTINCT_E_FACTORS)
- if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
- position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
- last_extruder = extruder;
- }
- #endif
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- const int32_t target[XYZE] = {
- LROUND(a * axis_steps_per_mm[X_AXIS]),
- LROUND(b * axis_steps_per_mm[Y_AXIS]),
- LROUND(c * axis_steps_per_mm[Z_AXIS]),
- LROUND(e * axis_steps_per_mm[E_AXIS_N])
- };
-
- /* <-- add a slash to enable
- SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s);
- #if IS_KINEMATIC
- SERIAL_ECHOPAIR(" A:", a);
- SERIAL_ECHOPAIR(" (", target[A_AXIS]);
- SERIAL_ECHOPAIR(" steps) B:", b);
- #else
- SERIAL_ECHOPAIR(" X:", a);
- SERIAL_ECHOPAIR(" (", target[X_AXIS]);
- SERIAL_ECHOPAIR(" steps) Y:", b);
- #endif
- SERIAL_ECHOPAIR(" (", target[Y_AXIS]);
- #if ENABLED(DELTA)
- SERIAL_ECHOPAIR(" steps) C:", c);
- #else
- SERIAL_ECHOPAIR(" steps) Z:", c);
- #endif
- SERIAL_ECHOPAIR(" (", target[Z_AXIS]);
- SERIAL_ECHOPAIR(" steps) E:", e);
- SERIAL_ECHOPAIR(" (", target[E_AXIS]);
- SERIAL_ECHOLNPGM(" steps)");
- //*/
-
- // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
- if (DEBUGGING(DRYRUN))
- position[E_AXIS] = target[E_AXIS];
-
- // Always split the first move in two so it can chain
- if (!blocks_queued()) {
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
- const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
- _buffer_steps(between, fr_mm_s, extruder);
- _buffer_steps(target, fr_mm_s, extruder);
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- else
- _buffer_steps(target, fr_mm_s, extruder);
-
stepper.wake_up();
-} // _buffer_line()
+} // buffer_line()
/**
* Directly set the planner XYZ position (and stepper positions)
diff --git a/Marlin/src/module/planner.h b/Marlin/src/module/planner.h
index 38474fad5fac3cf43ff1ca86ac2a3c45d1cb998b..84818bc5f9adc3df02b8c3a1950ed1aa6dcd9dc5 100644
--- a/Marlin/src/module/planner.h
+++ b/Marlin/src/module/planner.h
@@ -144,7 +144,7 @@ class Planner {
static uint8_t last_extruder; // Respond to extruder change
#endif
- static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
+ static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
@@ -352,17 +352,6 @@ class Planner {
#endif
- /**
- * Planner::_buffer_steps
- *
- * Add a new linear movement to the buffer (in terms of steps).
- *
- * target - target position in steps units
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- */
- static void _buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder);
-
/**
* Planner::_buffer_line
*
@@ -374,7 +363,7 @@ class Planner {
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
- static void _buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder);
+ static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);