diff --git a/Marlin/src/module/motion.cpp b/Marlin/src/module/motion.cpp
index 7795ba6498e2b5e0eed66709b080e0836d533840..32e13879a49e226ccd4c43299a92295674731508 100644
--- a/Marlin/src/module/motion.cpp
+++ b/Marlin/src/module/motion.cpp
@@ -651,7 +651,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
       #if ENABLED(SCARA_FEEDRATE_SCALING)
         // For SCARA scale the feed rate from mm/s to degrees/s
         // i.e., Complete the angular vector in the given time.
-        if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder))
+        if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder, segment_length))
           break;
         /*
         SERIAL_ECHO(segments);
@@ -664,7 +664,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
       #elif ENABLED(DELTA_FEEDRATE_SCALING)
         // For DELTA scale the feed rate from Effector mm/s to Carriage mm/s
         // i.e., Complete the linear vector in the given time.
-        if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder))
+        if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], SQRT(sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC)) * inverse_secs, active_extruder, segment_length))
           break;
         /*
         SERIAL_ECHO(segments);
@@ -689,7 +689,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
     #if ENABLED(SCARA_FEEDRATE_SCALING)
       const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
       if (diff2) {
-        planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
+        planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length);
         /*
         SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
         SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB);
@@ -701,7 +701,7 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
     #elif ENABLED(DELTA_FEEDRATE_SCALING)
       const float diff2 = sq(delta[A_AXIS] - oldA) + sq(delta[B_AXIS] - oldB) + sq(delta[C_AXIS] - oldC);
       if (diff2) {
-        planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
+        planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder, segment_length);
         /*
         SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]); SERIAL_ECHOPAIR(" C=", delta[C_AXIS]);
         SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB); SERIAL_ECHOPAIR(" cdiff=", delta[C_AXIS] - oldC);