diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index bb6f7ebb172344df25733169915d3df4deb3a8ad..a0e4adcf733c6ef3c42a9ee44adf46cbc47246d4 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -435,7 +435,8 @@ void getHighESpeed()
 }
 #endif
 
-void check_axes_activity() {
+void check_axes_activity()
+{
   unsigned char x_active = 0;
   unsigned char y_active = 0;  
   unsigned char z_active = 0;
@@ -444,10 +445,12 @@ void check_axes_activity() {
   unsigned char tail_fan_speed = 0;
   block_t *block;
 
-  if(block_buffer_tail != block_buffer_head) {
+  if(block_buffer_tail != block_buffer_head)
+  {
     uint8_t block_index = block_buffer_tail;
     tail_fan_speed = block_buffer[block_index].fan_speed;
-    while(block_index != block_buffer_head) {
+    while(block_index != block_buffer_head)
+    {
       block = &block_buffer[block_index];
       if(block->steps_x != 0) x_active++;
       if(block->steps_y != 0) y_active++;
@@ -457,27 +460,31 @@ void check_axes_activity() {
       block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
     }
   }
-  else {
-#if FAN_PIN > -1
+  else
+  {
+    #if FAN_PIN > -1
     if (FanSpeed != 0){
       analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
     }
-#endif
+    #endif
   }
   if((DISABLE_X) && (x_active == 0)) disable_x();
   if((DISABLE_Y) && (y_active == 0)) disable_y();
   if((DISABLE_Z) && (z_active == 0)) disable_z();
-  if((DISABLE_E) && (e_active == 0)) { 
+  if((DISABLE_E) && (e_active == 0))
+  {
     disable_e0();
     disable_e1();
     disable_e2(); 
   }
 #if FAN_PIN > -1
-  if((FanSpeed == 0) && (fan_speed ==0)) {
+  if((FanSpeed == 0) && (fan_speed ==0))
+  {
     analogWrite(FAN_PIN, 0);
   }
 
-  if (FanSpeed != 0 && tail_fan_speed !=0) { 
+  if (FanSpeed != 0 && tail_fan_speed !=0)
+  {
     analogWrite(FAN_PIN,tail_fan_speed);
   }
 #endif
@@ -498,7 +505,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
 
   // If the buffer is full: good! That means we are well ahead of the robot. 
   // Rest here until there is room in the buffer.
-  while(block_buffer_tail == next_buffer_head) { 
+  while(block_buffer_tail == next_buffer_head)
+  {
     manage_heater(); 
     manage_inactivity(); 
     LCD_STATUS;
@@ -513,23 +521,26 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
   target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
   target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
 
-#ifdef PREVENT_DANGEROUS_EXTRUDE
-  if(target[E_AXIS]!=position[E_AXIS])
+  #ifdef PREVENT_DANGEROUS_EXTRUDE
+  if(target[E_AXIS]!=position[E_AXIS])
+  {
     if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
     {
       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
       SERIAL_ECHO_START;
       SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
     }
-#ifdef PREVENT_LENGTHY_EXTRUDE
-  if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
-  {
-    position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
-    SERIAL_ECHO_START;
-    SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
+    
+    #ifdef PREVENT_LENGTHY_EXTRUDE
+    if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
+    {
+      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
+      SERIAL_ECHO_START;
+      SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
+    }
+    #endif
   }
-#endif
-#endif
+  #endif
 
   // Prepare to set up new block
   block_t *block = &block_buffer[block_buffer_head];
@@ -547,24 +558,29 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
   block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
 
   // Bail if this is a zero-length block
-  if (block->step_event_count <= dropsegments) { 
+  if (block->step_event_count <= dropsegments)
+  { 
     return; 
-  };
+  }
 
   block->fan_speed = FanSpeed;
 
   // Compute direction bits for this block 
   block->direction_bits = 0;
-  if (target[X_AXIS] < position[X_AXIS]) { 
+  if (target[X_AXIS] < position[X_AXIS])
+  {
     block->direction_bits |= (1<<X_AXIS); 
   }
-  if (target[Y_AXIS] < position[Y_AXIS]) { 
+  if (target[Y_AXIS] < position[Y_AXIS])
+  {
     block->direction_bits |= (1<<Y_AXIS); 
   }
-  if (target[Z_AXIS] < position[Z_AXIS]) { 
+  if (target[Z_AXIS] < position[Z_AXIS])
+  {
     block->direction_bits |= (1<<Z_AXIS); 
   }
-  if (target[E_AXIS] < position[E_AXIS]) { 
+  if (target[E_AXIS] < position[E_AXIS])
+  {
     block->direction_bits |= (1<<E_AXIS); 
   }
 
@@ -578,16 +594,19 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
 #endif
 
   // Enable all
-  if(block->steps_e != 0) { 
+  if(block->steps_e != 0)
+  {
     enable_e0();
     enable_e1();
     enable_e2(); 
   }
 
-  if (block->steps_e == 0) {
+  if (block->steps_e == 0)
+  {
     if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
   }
-  else {
+  else
+  {
     if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
   } 
 
@@ -596,10 +615,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
   delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
   delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
   delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
-  if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
+  if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
+  {
     block->millimeters = fabs(delta_mm[E_AXIS]);
   } 
-  else {
+  else
+  {
     block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
   }
   float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides 
@@ -611,14 +632,17 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
 
   // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
 #ifdef OLD_SLOWDOWN
-  if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); 
+  if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
+    feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); 
 #endif
 
 #ifdef SLOWDOWN
   //  segment time im micro seconds
   unsigned long segment_time = lround(1000000.0/inverse_second);
-  if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
-    if (segment_time < minsegmenttime)  { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
+  if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
+  {
+    if (segment_time < minsegmenttime)
+    { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
       inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
     }
   }
@@ -632,7 +656,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
   // Calculate and limit speed in mm/sec for each axis
   float current_speed[4];
   float speed_factor = 1.0; //factor <=1 do decrease speed
-  for(int i=0; i < 4; i++) {
+  for(int i=0; i < 4; i++)
+  {
     current_speed[i] = delta_mm[i] * inverse_second;
     if(fabs(current_speed[i]) > max_feedrate[i])
       speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
@@ -646,18 +671,22 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
   unsigned char direction_change = block->direction_bits ^ old_direction_bits;
   old_direction_bits = block->direction_bits;
 
-  if((direction_change & (1<<X_AXIS)) == 0) {
+  if((direction_change & (1<<X_AXIS)) == 0)
+  {
     x_segment_time[0] += segment_time;
   }
-  else {
+  else
+  {
     x_segment_time[2] = x_segment_time[1];
     x_segment_time[1] = x_segment_time[0];
     x_segment_time[0] = segment_time;
   }
-  if((direction_change & (1<<Y_AXIS)) == 0) {
+  if((direction_change & (1<<Y_AXIS)) == 0)
+  {
     y_segment_time[0] += segment_time;
   }
-  else {
+  else
+  {
     y_segment_time[2] = y_segment_time[1];
     y_segment_time[1] = y_segment_time[0];
     y_segment_time[0] = segment_time;
@@ -665,12 +694,15 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
   long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
   long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
   long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
-  if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
+  if(min_xy_segment_time < MAX_FREQ_TIME)
+    speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
 #endif
 
   // Correct the speed  
-  if( speed_factor < 1.0) {
-    for(unsigned char i=0; i < 4; i++) {
+  if( speed_factor < 1.0)
+  {
+    for(unsigned char i=0; i < 4; i++)
+    {
       current_speed[i] *= speed_factor;
     }
     block->nominal_speed *= speed_factor;
@@ -679,10 +711,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
 
   // Compute and limit the acceleration rate for the trapezoid generator.  
   float steps_per_mm = block->step_event_count/block->millimeters;
-  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
+  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
+  {
     block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
   }
-  else {
+  else
+  {
     block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
     // Limit acceleration per axis
     if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])