diff --git a/.travis.yml b/.travis.yml
index 4ca3b13ab8b9270d154315ab95d361c4cf6def37..568f9c6cd2098770160dc6971fd734c632291a5c 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -118,7 +118,7 @@ script:
   # Add a Sled Z Probe, use UBL Cartesian moves, use Japanese language
   #
   - opt_set LANGUAGE kana_utf8
-  - opt_enable Z_PROBE_SLED SKEW_CORRECTION SKEW_CORRECTION_FOR_Z SKEW_CORRECTION_GCODE
+  - opt_enable Z_PROBE_SLED SKEW_CORRECTION SKEW_CORRECTION_FOR_Z SKEW_CORRECTION_GCODE BEZIER_JERK_CONTROL
   - opt_disable SEGMENT_LEVELED_MOVES
   - opt_enable_adv BABYSTEP_ZPROBE_OFFSET DOUBLECLICK_FOR_Z_BABYSTEPPING
   - build_marlin
diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h
index 1a416dd6f2f1182d65cfb2a815359a9d38b81f7e..7d0efcc303ceb82b1ea0a75ba786385d9e2f8137 100644
--- a/Marlin/Configuration.h
+++ b/Marlin/Configuration.h
@@ -594,6 +594,17 @@
 #define DEFAULT_ZJERK                  0.3
 #define DEFAULT_EJERK                  5.0
 
+/**
+ * Realtime Jerk Control
+ *
+ * This option eliminates vibration during printing by fitting a Bézier
+ * curve to move acceleration, producing much smoother direction changes.
+ * Because this is computationally-intensive, a 32-bit MCU is required.
+ *
+ * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained
+ */
+//#define BEZIER_JERK_CONTROL
+
 //===========================================================================
 //============================= Z Probe Options =============================
 //===========================================================================
diff --git a/Marlin/macros.h b/Marlin/macros.h
index a5f92a2d9f5c5ca57edb2454def64b4f3bb50a1f..74dd68ec6b900c597625ccd61f0e40326fd8c29f 100644
--- a/Marlin/macros.h
+++ b/Marlin/macros.h
@@ -117,6 +117,9 @@
 #define STRINGIFY_(M) #M
 #define STRINGIFY(M) STRINGIFY_(M)
 
+#define A(CODE) " " CODE "\n\t"
+#define L(CODE) CODE ":\n\t"
+
 // Macros for bit masks
 #undef _BV
 #define _BV(b) (1<<(b))
diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index 7a05ccc4938d33ae675a84a4749ae253daed702b..21f7cdd47585f1509a2c0e01293439d02c22da23 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -204,6 +204,514 @@ void Planner::init() {
   clear_block_buffer();
 }
 
+#if ENABLED(BEZIER_JERK_CONTROL)
+
+  // This routine, for AVR, returns 0x1000000 / d, but trying to get the inverse as
+  //  fast as possible. A fast converging iterative Newton-Raphson method is able to
+  //  reach full precision in just 1 iteration, and takes 211 cycles (worst case, mean
+  //  case is less, up to 30 cycles for small divisors), instead of the 500 cycles a
+  //  normal division would take.
+  //
+  // Inspired by the following page,
+  //  https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
+  //
+  // Suppose we want to calculate
+  //  floor(2 ^ k / B)    where B is a positive integer
+  // Then
+  //  B must be <= 2^k, otherwise, the quotient is 0.
+  //
+  // The Newton - Raphson iteration for x = B / 2 ^ k yields:
+  //  q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
+  //
+  // We can rearrange it as:
+  //  q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
+  //
+  //  Each iteration of this kind requires only integer multiplications
+  // and bit shifts.
+  //  Does it converge to floor(2 ^ k / B) ?:  Not necessarily, but, in
+  // the worst case, it eventually alternates between floor(2 ^ k / B)
+  // and ceiling(2 ^ k / B)).
+  //  So we can use some not-so-clever test to see if we are in this
+  // case, and extract floor(2 ^ k / B).
+  //  Lastly, a simple but important optimization for this approach is to
+  // truncate multiplications (i.e.calculate only the higher bits of the
+  // product) in the early iterations of the Newton - Raphson method.The
+  // reason to do so, is that the results of the early iterations are far
+  // from the quotient, and it doesn't matter to perform them inaccurately.
+  //  Finally, we should pick a good starting value for x. Knowing how many
+  // digits the divisor has, we can estimate it:
+  //
+  // 2^k / x = 2 ^ log2(2^k / x)
+  // 2^k / x = 2 ^(log2(2^k)-log2(x))
+  // 2^k / x = 2 ^(k*log2(2)-log2(x))
+  // 2^k / x = 2 ^ (k-log2(x))
+  // 2^k / x >= 2 ^ (k-floor(log2(x)))
+  // floor(log2(x)) simply is the index of the most significant bit set.
+  //
+  //  If we could improve this estimation even further, then the number of
+  // iterations can be dropped quite a bit, thus saving valuable execution time.
+  //  The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
+  // Research, Silicon Valley,August 26, 2008, that is available at
+  // https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
+  // suggests , for its integer division algorithm, that using a table to supply the
+  // first 8 bits of precision, and due to the quadratic convergence nature of the
+  // Newton-Raphon iteration, then just 2 iterations should be enough to get
+  // maximum precision of the division.
+  //  If we precompute values of inverses for small denominator values, then
+  // just one Newton-Raphson iteration is enough to reach full precision
+  //  We will use the top 9 bits of the denominator as index.
+  //
+  //  The AVR assembly function is implementing the following C code, included
+  // here as reference:
+  //
+  // uint32_t get_period_inverse(uint32_t d) {
+  //  static const uint8_t inv_tab[256] = {
+  //    255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
+  //    225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
+  //    199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
+  //    175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
+  //    153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
+  //    134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
+  //    116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
+  //    100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
+  //    85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
+  //    71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
+  //    59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
+  //    47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
+  //    36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
+  //    26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
+  //    17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
+  //    8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
+  //  };
+  //
+  //  // For small denominators, it is cheaper to directly store the result,
+  //  //  because those denominators would require 2 Newton-Raphson iterations
+  //  //  to converge to the required result precision. For bigger ones, just
+  //  //  ONE Newton-Raphson iteration is enough to get maximum precision!
+  //  static const uint32_t small_inv_tab[111] PROGMEM = {
+  //    16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
+  //    1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
+  //    524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
+  //    349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
+  //    262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
+  //    209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
+  //    174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
+  //  };
+  //
+  //  // For small divisors, it is best to directly retrieve the results
+  //  if (d <= 110)
+  //    return pgm_read_dword(&small_inv_tab[d]);
+  //
+  //  // Compute initial estimation of 0x1000000/x -
+  //  // Get most significant bit set on divider
+  //  uint8_t idx = 0;
+  //  uint32_t nr = d;
+  //  if (!(nr & 0xFF0000)) {
+  //    nr <<= 8;
+  //    idx += 8;
+  //    if (!(nr & 0xFF0000)) {
+  //      nr <<= 8;
+  //      idx += 8;
+  //    }
+  //  }
+  //  if (!(nr & 0xF00000)) {
+  //    nr <<= 4;
+  //    idx += 4;
+  //  }
+  //  if (!(nr & 0xC00000)) {
+  //    nr <<= 2;
+  //    idx += 2;
+  //  }
+  //  if (!(nr & 0x800000)) {
+  //    nr <<= 1;
+  //    idx += 1;
+  //  }
+  //
+  //  // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
+  //  uint32_t tidx = nr >> 15;         // top 9 bits. bit8 is always set
+  //  uint32_t ie = inv_tab[tidx & 0xFF] + 256; // Get the table value. bit9 is always set
+  //  uint32_t x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
+  //
+  //  // Now, refine estimation by newton-raphson. 1 iteration is enough
+  //  x = uint32_t((x * uint64_t((1 << 25) - x * d)) >> 24);
+  //
+  //  // Estimate remainder
+  //  uint32_t r = (1 << 24) - x * d;
+  //
+  //  // Check if we must adjust result
+  //  if (r >= d) x++;
+  //
+  //  // x holds the proper estimation
+  //  return uint32_t(x);
+  // }
+  //
+  static uint32_t get_period_inverse(uint32_t d) {
+
+     static const uint8_t inv_tab[256] PROGMEM = {
+      255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
+      225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
+      199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
+      175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
+      153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
+      134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
+      116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
+      100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
+      85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
+      71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
+      59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
+      47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
+      36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
+      26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
+      17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
+      8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
+    };
+
+    // For small denominators, it is cheaper to directly store the result.
+    //  For bigger ones, just ONE Newton-Raphson iteration is enough to get
+    //  maximum precision we need
+    static const uint32_t small_inv_tab[111] PROGMEM = {
+      16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
+      1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
+      524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
+      349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
+      262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
+      209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
+      174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
+    };
+
+    // For small divisors, it is best to directly retrieve the results
+    if (d <= 110)
+      return pgm_read_dword(&small_inv_tab[d]);
+
+    register uint8_t r8 = d & 0xFF;
+    register uint8_t r9 = (d >> 8) & 0xFF;
+    register uint8_t r10 = (d >> 16) & 0xFF;
+    register uint8_t r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
+    register const uint8_t* ptab = inv_tab;
+
+    __asm__ __volatile__(
+      // %8:%7:%6 = interval
+      // r31:r30: MUST be those registers, and they must point to the inv_tab
+
+      A("clr %13")                      // %13 = 0
+
+      // Now we must compute
+      // result = 0xFFFFFF / d
+      // %8:%7:%6 = interval
+      // %16:%15:%14 = nr
+      // %13 = 0
+
+      // A plain division of 24x24 bits should take 388 cycles to complete. We will
+      // use Newton-Raphson for the calculation, and will strive to get way less cycles
+      // for the same result - Using C division, it takes 500cycles to complete .
+
+      A("clr %3")                       // idx = 0
+      A("mov %14,%6")     
+      A("mov %15,%7")     
+      A("mov %16,%8")                   // nr = interval
+      A("tst %16")                      // nr & 0xFF0000 == 0 ?
+      A("brne 2f")                      // No, skip this
+      A("mov %16,%15")     
+      A("mov %15,%14")                  // nr <<= 8, %14 not needed
+      A("subi %3,-8")                   // idx += 8
+      A("tst %16")                      // nr & 0xFF0000 == 0 ?
+      A("brne 2f")                      // No, skip this
+      A("mov %16,%15")                  // nr <<= 8, %14 not needed
+      A("clr %15")                      // We clear %14
+      A("subi %3,-8")                   // idx += 8
+
+      // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
+      L("2")
+      A("cpi %16,0x10")                 // (nr & 0xF00000) == 0 ?
+      A("brcc 3f")                      // No, skip this
+      A("swap %15")                     // Swap nibbles
+      A("swap %16")                     // Swap nibbles. Low nibble is 0
+      A("mov %14, %15")     
+      A("andi %14,0x0F")                // Isolate low nibble
+      A("andi %15,0xF0")                // Keep proper nibble in %15
+      A("or %16, %14")                  // %16:%15 <<= 4
+      A("subi %3,-4")                   // idx += 4
+
+      L("3")
+      A("cpi %16,0x40")                 // (nr & 0xC00000) == 0 ?
+      A("brcc 4f")                      // No, skip this
+      A("add %15,%15")     
+      A("adc %16,%16")     
+      A("add %15,%15")     
+      A("adc %16,%16")                  // %16:%15 <<= 2
+      A("subi %3,-2")                   // idx += 2
+
+      L("4")
+      A("cpi %16,0x80")                 // (nr & 0x800000) == 0 ?
+      A("brcc 5f")                      // No, skip this
+      A("add %15,%15")     
+      A("adc %16,%16")                  // %16:%15 <<= 1
+      A("inc %3")                       // idx += 1
+
+      // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
+      // we have at least 9 MSBits available to enter the initial estimation table
+      L("5")
+      A("add %15,%15")     
+      A("adc %16,%16")                  // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
+      A("add r30,%16")                  // Only use top 8 bits
+      A("adc r31,%13")                  // r31:r30 = inv_tab + (tidx)
+      A("lpm %14, Z")                   // %14 = inv_tab[tidx]
+      A("ldi %15, 1")                   // %15 = 1  %15:%14 = inv_tab[tidx] + 256
+
+      // We must scale the approximation to the proper place
+      A("clr %16")                      // %16 will always be 0 here
+      A("subi %3,8")                    // idx == 8 ?
+      A("breq 6f")                      // yes, no need to scale
+      A("brcs 7f")                      // If C=1, means idx < 8, result was negative!
+
+      // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
+      A("sbrs %3,0")                    // shift by 1bit position?
+      A("rjmp 8f")                      // No
+      A("add %14,%14")     
+      A("adc %15,%15")                  // %15:16 <<= 1
+      L("8")
+      A("sbrs %3,1")                    // shift by 2bit position?
+      A("rjmp 9f")                      // No
+      A("add %14,%14")     
+      A("adc %15,%15")     
+      A("add %14,%14")     
+      A("adc %15,%15")                  // %15:16 <<= 1
+      L("9")
+      A("sbrs %3,2")                    // shift by 4bits position?
+      A("rjmp 16f")                     // No
+      A("swap %15")                     // Swap nibbles. lo nibble of %15 will always be 0
+      A("swap %14")                     // Swap nibbles
+      A("mov %12,%14")     
+      A("andi %12,0x0F")                // isolate low nibble
+      A("andi %14,0xF0")                // and clear it
+      A("or %15,%12")                   // %15:%16 <<= 4
+      L("16")
+      A("sbrs %3,3")                    // shift by 8bits position?
+      A("rjmp 6f")                      // No, we are done
+      A("mov %16,%15")     
+      A("mov %15,%14")     
+      A("clr %14")     
+      A("jmp 6f")     
+
+      // idx < 8, now %3 = idx - 8. Get the count of bits
+      L("7")
+      A("neg %3")                       // %3 = -idx = count of bits to move right. idx range:[1...8]
+      A("sbrs %3,0")                    // shift by 1 bit position ?
+      A("rjmp 10f")                     // No, skip it
+      A("asr %15")                      // (bit7 is always 0 here)
+      A("ror %14")     
+      L("10")
+      A("sbrs %3,1")                    // shift by 2 bit position ?
+      A("rjmp 11f")                     // No, skip it
+      A("asr %15")                      // (bit7 is always 0 here)
+      A("ror %14")     
+      A("asr %15")                      // (bit7 is always 0 here)
+      A("ror %14")     
+      L("11")
+      A("sbrs %3,2")                    // shift by 4 bit position ?
+      A("rjmp 12f")                     // No, skip it
+      A("swap %15")                     // Swap nibbles
+      A("andi %14, 0xF0")               // Lose the lowest nibble
+      A("swap %14")                     // Swap nibbles. Upper nibble is 0
+      A("or %14,%15")                   // Pass nibble from upper byte
+      A("andi %15, 0x0F")               // And get rid of that nibble
+      L("12")
+      A("sbrs %3,3")                    // shift by 8 bit position ?
+      A("rjmp 6f")                      // No, skip it
+      A("mov %14,%15")     
+      A("clr %15")     
+      L("6")                            // %16:%15:%14 = initial estimation of 0x1000000 / d)
+
+      // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
+      // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
+      // to get more than 18bits of precision (the initial table lookup gives 9 bits of
+      // precision to start from). 18bits of precision is all what is needed here for result
+
+      // %8:%7:%6 = d = interval
+      // %16:%15:%14 = x = initial estimation of 0x1000000 / d
+      // %13 = 0
+      // %3:%2:%1:%0 = working accumulator
+
+      // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
+      A("clr %0")     
+      A("clr %1")     
+      A("clr %2")     
+      A("ldi %3,2")                     // %3:%2:%1:%0 = 0x2000000
+      A("mul %6,%14")                   // r1:r0 = LO(d) * LO(x)
+      A("sub %0,r0")     
+      A("sbc %1,r1")     
+      A("sbc %2,%13")     
+      A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * LO(x)
+      A("mul %7,%14")                   // r1:r0 = MI(d) * LO(x)
+      A("sub %1,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%13")                   // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
+      A("mul %8,%14")                   // r1:r0 = HI(d) * LO(x)
+      A("sub %2,r0")     
+      A("sbc %3,r1")                    // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
+      A("mul %6,%15")                   // r1:r0 = LO(d) * MI(x)
+      A("sub %1,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
+      A("mul %7,%15")                   // r1:r0 = MI(d) * MI(x)
+      A("sub %2,r0")     
+      A("sbc %3,r1")                    // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
+      A("mul %8,%15")                   // r1:r0 = HI(d) * MI(x)
+      A("sub %3,r0")                    // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
+      A("mul %6,%16")                   // r1:r0 = LO(d) * HI(x)
+      A("sub %2,r0")     
+      A("sbc %3,r1")                    // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
+      A("mul %7,%16")                   // r1:r0 = MI(d) * HI(x)
+      A("sub %3,r0")                    // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
+      // %3:%2:%1:%0 = (1<<25) - x*d     [169]
+
+      // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
+
+      // %16:%15:%14 = x = initial estimation of 0x1000000 / d
+      // %3:%2:%1:%0 = (1<<25) - x*d = acc
+      // %13 = 0
+
+      // result = %11:%10:%9:%5:%4
+      A("mul %14,%0")                   // r1:r0 = LO(x) * LO(acc)
+      A("mov %4,r1")     
+      A("clr %5")     
+      A("clr %9")     
+      A("clr %10")     
+      A("clr %11")                      // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
+      A("mul %15,%0")                   // r1:r0 = MI(x) * LO(acc)
+      A("add %4,r0")     
+      A("adc %5,r1")     
+      A("adc %9,%13")     
+      A("adc %10,%13")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
+      A("mul %16,%0")                   // r1:r0 = HI(x) * LO(acc)
+      A("add %5,r0")     
+      A("adc %9,r1")     
+      A("adc %10,%13")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
+
+      A("mul %14,%1")                   // r1:r0 = LO(x) * MIL(acc)
+      A("add %4,r0")     
+      A("adc %5,r1")     
+      A("adc %9,%13")     
+      A("adc %10,%13")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
+      A("mul %15,%1")                   // r1:r0 = MI(x) * MIL(acc)
+      A("add %5,r0")     
+      A("adc %9,r1")     
+      A("adc %10,%13")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
+      A("mul %16,%1")                   // r1:r0 = HI(x) * MIL(acc)
+      A("add %9,r0")     
+      A("adc %10,r1")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
+
+      A("mul %14,%2")                   // r1:r0 = LO(x) * MIH(acc)
+      A("add %5,r0")     
+      A("adc %9,r1")     
+      A("adc %10,%13")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
+      A("mul %15,%2")                   // r1:r0 = MI(x) * MIH(acc)
+      A("add %9,r0")     
+      A("adc %10,r1")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
+      A("mul %16,%2")                   // r1:r0 = HI(x) * MIH(acc)
+      A("add %10,r0")     
+      A("adc %11,r1")                   // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
+
+      A("mul %14,%3")                   // r1:r0 = LO(x) * HI(acc)
+      A("add %9,r0")     
+      A("adc %10,r1")     
+      A("adc %11,%13")                  // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
+      A("mul %15,%3")                   // r1:r0 = MI(x) * HI(acc)
+      A("add %10,r0")     
+      A("adc %11,r1")                   // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
+      A("mul %16,%3")                   // r1:r0 = HI(x) * HI(acc)
+      A("add %11,r0")                   // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
+
+      // At this point, %11:%10:%9 contains the new estimation of x.
+
+      // Finally, we must correct the result. Estimate remainder as
+      // (1<<24) - x*d
+      // %11:%10:%9 = x
+      // %8:%7:%6 = d = interval" "\n\t"
+      A("ldi %3,1")     
+      A("clr %2")     
+      A("clr %1")     
+      A("clr %0")                       // %3:%2:%1:%0 = 0x1000000
+      A("mul %6,%9")                    // r1:r0 = LO(d) * LO(x)
+      A("sub %0,r0")     
+      A("sbc %1,r1")     
+      A("sbc %2,%13")     
+      A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * LO(x)
+      A("mul %7,%9")                    // r1:r0 = MI(d) * LO(x)
+      A("sub %1,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%13")                   // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
+      A("mul %8,%9")                    // r1:r0 = HI(d) * LO(x)
+      A("sub %2,r0")     
+      A("sbc %3,r1")                    // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
+      A("mul %6,%10")                   // r1:r0 = LO(d) * MI(x)
+      A("sub %1,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%13")                   // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
+      A("mul %7,%10")                   // r1:r0 = MI(d) * MI(x)
+      A("sub %2,r0")     
+      A("sbc %3,r1")                    // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
+      A("mul %8,%10")                   // r1:r0 = HI(d) * MI(x)
+      A("sub %3,r0")                    // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
+      A("mul %6,%11")                   // r1:r0 = LO(d) * HI(x)
+      A("sub %2,r0")     
+      A("sbc %3,r1")                    // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
+      A("mul %7,%11")                   // r1:r0 = MI(d) * HI(x)
+      A("sub %3,r0")                    // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
+      // %3:%2:%1:%0 = r = (1<<24) - x*d
+      // %8:%7:%6 = d = interval
+
+      // Perform the final correction
+      A("sub %0,%6")     
+      A("sbc %1,%7")     
+      A("sbc %2,%8")                    // r -= d
+      A("brcs 14f")                     // if ( r >= d)
+
+      // %11:%10:%9 = x
+      A("ldi %3,1")     
+      A("add %9,%3")     
+      A("adc %10,%13")     
+      A("adc %11,%13")                  // x++
+      L("14")
+
+      // Estimation is done. %11:%10:%9 = x
+      A("clr __zero_reg__")             // Make C runtime happy
+      // [211 cycles total]
+      : "=r" (r2),
+        "=r" (r3),
+        "=r" (r4),
+        "=d" (r5),
+        "=r" (r6),
+        "=r" (r7),
+        "+r" (r8),
+        "+r" (r9),
+        "+r" (r10),
+        "=d" (r11),
+        "=r" (r12),
+        "=r" (r13),
+        "=d" (r14),
+        "=d" (r15),
+        "=d" (r16),
+        "=d" (r17),
+        "=d" (r18),
+        "+z" (ptab)
+      :
+      : "r0", "r1", "cc"
+    );
+
+    // Return the result
+    return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
+  }
+
+#endif // BEZIER_JERK_CONTROL
+
 #define MINIMAL_STEP_RATE 120
 
 /**
@@ -218,6 +726,10 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
   NOLESS(initial_rate, MINIMAL_STEP_RATE);
   NOLESS(final_rate, MINIMAL_STEP_RATE);
 
+  #if ENABLED(BEZIER_JERK_CONTROL)
+    uint32_t cruise_rate = initial_rate;
+  #endif
+
   const int32_t accel = block->acceleration_steps_per_s2;
 
           // Steps required for acceleration, deceleration to/from nominal rate
@@ -235,16 +747,43 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
     NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
     accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
     plateau_steps = 0;
+
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      // We won't reach the cruising rate. Let's calculate the speed we will reach
+      cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
+    #endif
   }
+  #if ENABLED(BEZIER_JERK_CONTROL)
+    else // We have some plateau time, so the cruise rate will be the nominal rate
+      cruise_rate = block->nominal_rate;
+  #endif
 
   // block->accelerate_until = accelerate_steps;
   // block->decelerate_after = accelerate_steps+plateau_steps;
 
+  #if ENABLED(BEZIER_JERK_CONTROL)
+    // Jerk controlled speed requires to express speed versus time, NOT steps
+    uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (HAL_STEPPER_TIMER_RATE),
+             deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (HAL_STEPPER_TIMER_RATE);
+
+    // And to offload calculations from the ISR, we also calculate the inverse of those times here
+    uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time);
+    uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time);
+
+  #endif
+
   CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
   if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
     block->accelerate_until = accelerate_steps;
     block->decelerate_after = accelerate_steps + plateau_steps;
     block->initial_rate = initial_rate;
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      block->acceleration_time = acceleration_time;
+      block->deceleration_time = deceleration_time;
+      block->acceleration_time_inverse = acceleration_time_inverse;
+      block->deceleration_time_inverse = deceleration_time_inverse;
+      block->cruise_rate = cruise_rate;
+    #endif
     block->final_rate = final_rate;
   }
   CRITICAL_SECTION_END;
@@ -1286,10 +1825,12 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
   }
   block->acceleration_steps_per_s2 = accel;
   block->acceleration = accel / steps_per_mm;
-  block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
+  #if DISABLED(BEZIER_JERK_CONTROL)
+    block->acceleration_rate = (long)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); // * 8.388608
+  #endif
   #if ENABLED(LIN_ADVANCE)
     if (block->use_advance_lead) {
-      block->advance_speed = ((F_CPU) * 0.125) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS]);
+      block->advance_speed = (HAL_STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS]);
       #if ENABLED(LA_DEBUG)
         if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio)
           SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
diff --git a/Marlin/planner.h b/Marlin/planner.h
index e051c4a0dcef101f3b129bdf79507d3f614c6bcf..79e2c2ee33e7079e7572499b24b83c23803e9edb 100644
--- a/Marlin/planner.h
+++ b/Marlin/planner.h
@@ -90,9 +90,24 @@ typedef struct {
     uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
   #endif
 
+  // Settings for the trapezoid generator
   int32_t accelerate_until,                 // The index of the step event on which to stop acceleration
-          decelerate_after,                 // The index of the step event on which to start decelerating
-          acceleration_rate;                // The acceleration rate used for acceleration calculation
+          decelerate_after;                 // The index of the step event on which to start decelerating
+
+  uint32_t nominal_rate,                    // The nominal step rate for this block in step_events/sec
+           initial_rate,                    // The jerk-adjusted step rate at start of block
+           final_rate,                      // The minimal rate at exit
+           acceleration_steps_per_s2;       // acceleration steps/sec^2
+
+  #if ENABLED(BEZIER_JERK_CONTROL)
+    uint32_t cruise_rate;                   // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
+    uint32_t acceleration_time,             // Acceleration time and deceleration time in STEP timer counts
+             deceleration_time;
+    uint32_t acceleration_time_inverse,     // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
+             deceleration_time_inverse;
+  #else
+    int32_t acceleration_rate;              // The acceleration rate used for acceleration calculation
+  #endif
 
   uint8_t direction_bits;                   // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
 
@@ -112,12 +127,6 @@ typedef struct {
         millimeters,                        // The total travel of this block in mm
         acceleration;                       // acceleration mm/sec^2
 
-  // Settings for the trapezoid generator
-  uint32_t nominal_rate,                    // The nominal step rate for this block in step_events/sec
-           initial_rate,                    // The jerk-adjusted step rate at start of block
-           final_rate,                      // The minimal rate at exit
-           acceleration_steps_per_s2;       // acceleration steps/sec^2
-
   #if FAN_COUNT > 0
     uint16_t fan_speed[FAN_COUNT];
   #endif
@@ -661,6 +670,15 @@ class Planner {
       return SQRT(sq(target_velocity) - 2 * accel * distance);
     }
 
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      /**
+       * Calculate the speed reached given initial speed, acceleration and distance
+       */
+      static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
+        return SQRT(sq(initial_velocity) + 2 * accel * distance);
+      }
+    #endif
+
     static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
 
     static void reverse_pass_kernel(block_t* const current, const block_t * const next);
diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp
index 06dc29dc181f6eac49110b08045409d3defe4786..1f03e3ccb3e590abcd54ee52a704b2fe18a1e32b 100644
--- a/Marlin/stepper.cpp
+++ b/Marlin/stepper.cpp
@@ -41,8 +41,16 @@
  * along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
  */
 
-/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
-   and Philipp Tiefenbacher. */
+/**
+ * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
+ * and Philipp Tiefenbacher.
+ */
+
+/**
+ * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
+ * Equations based on Synthethos TinyG2 sources, but the fixed-point
+ * implementation is new, as we are running the ISR with a variable period.
+ */
 
 #include "Marlin.h"
 #include "stepper.h"
@@ -98,6 +106,16 @@ int32_t Stepper::counter_X = 0,
 
 volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
 
+#if ENABLED(BEZIER_JERK_CONTROL)
+  int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A");    // A coefficient in Bézier speed curve with alias for assembler
+  int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B");    // B coefficient in Bézier speed curve with alias for assembler
+  int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C");    // C coefficient in Bézier speed curve with alias for assembler
+  uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F");   // F coefficient in Bézier speed curve with alias for assembler
+  uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
+  bool __attribute__((used)) Stepper::A_negative __asm__("A_negative");   // If A coefficient was negative
+  bool Stepper::bezier_2nd_half;    // =false If Bézier curve has been initialized or not
+#endif
+
 #if ENABLED(LIN_ADVANCE)
 
   uint32_t Stepper::LA_decelerate_after;
@@ -134,8 +152,10 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
 
 uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
 
-uint16_t Stepper::OCR1A_nominal,
-         Stepper::acc_step_rate; // needed for deceleration start point
+uint16_t Stepper::OCR1A_nominal;
+#if DISABLED(BEZIER_JERK_CONTROL)
+  uint16_t Stepper::acc_step_rate; // needed for deceleration start point
+#endif
 
 volatile int32_t Stepper::endstops_trigsteps[XYZ];
 
@@ -232,41 +252,41 @@ volatile int32_t Stepper::endstops_trigsteps[XYZ];
 //
 #define MultiU24X32toH16(intRes, longIn1, longIn2) \
   asm volatile ( \
-                 "clr r26 \n\t" \
-                 "mul %A1, %B2 \n\t" \
-                 "mov r27, r1 \n\t" \
-                 "mul %B1, %C2 \n\t" \
-                 "movw %A0, r0 \n\t" \
-                 "mul %C1, %C2 \n\t" \
-                 "add %B0, r0 \n\t" \
-                 "mul %C1, %B2 \n\t" \
-                 "add %A0, r0 \n\t" \
-                 "adc %B0, r1 \n\t" \
-                 "mul %A1, %C2 \n\t" \
-                 "add r27, r0 \n\t" \
-                 "adc %A0, r1 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "mul %B1, %B2 \n\t" \
-                 "add r27, r0 \n\t" \
-                 "adc %A0, r1 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "mul %C1, %A2 \n\t" \
-                 "add r27, r0 \n\t" \
-                 "adc %A0, r1 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "mul %B1, %A2 \n\t" \
-                 "add r27, r1 \n\t" \
-                 "adc %A0, r26 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "lsr r27 \n\t" \
-                 "adc %A0, r26 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "mul %D2, %A1 \n\t" \
-                 "add %A0, r0 \n\t" \
-                 "adc %B0, r1 \n\t" \
-                 "mul %D2, %B1 \n\t" \
-                 "add %B0, r0 \n\t" \
-                 "clr r1 \n\t" \
+                 A("clr r26") \
+                 A("mul %A1, %B2") \
+                 A("mov r27, r1") \
+                 A("mul %B1, %C2") \
+                 A("movw %A0, r0") \
+                 A("mul %C1, %C2") \
+                 A("add %B0, r0") \
+                 A("mul %C1, %B2") \
+                 A("add %A0, r0") \
+                 A("adc %B0, r1") \
+                 A("mul %A1, %C2") \
+                 A("add r27, r0") \
+                 A("adc %A0, r1") \
+                 A("adc %B0, r26") \
+                 A("mul %B1, %B2") \
+                 A("add r27, r0") \
+                 A("adc %A0, r1") \
+                 A("adc %B0, r26") \
+                 A("mul %C1, %A2") \
+                 A("add r27, r0") \
+                 A("adc %A0, r1") \
+                 A("adc %B0, r26") \
+                 A("mul %B1, %A2") \
+                 A("add r27, r1") \
+                 A("adc %A0, r26") \
+                 A("adc %B0, r26") \
+                 A("lsr r27") \
+                 A("adc %A0, r26") \
+                 A("adc %B0, r26") \
+                 A("mul %D2, %A1") \
+                 A("add %A0, r0") \
+                 A("adc %B0, r1") \
+                 A("mul %D2, %B1") \
+                 A("add %B0, r0") \
+                 A("clr r1") \
                  : \
                  "=&r" (intRes) \
                  : \
@@ -345,6 +365,732 @@ void Stepper::set_directions() {
   extern volatile uint8_t e_hit;
 #endif
 
+#if ENABLED(BEZIER_JERK_CONTROL)
+  /**
+   *   We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve.
+   *  This gives us a "linear pop" velocity curve; with pop being the sixth derivative of position:
+   *  velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
+   *
+   *  The Bézier curve takes the form:
+   *
+   *  V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
+   *
+   *   Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
+   *  through B_5(t) are the Bernstein basis as follows:
+   *
+   *        B_0(t) =   (1-t)^5        =   -t^5 +  5t^4 - 10t^3 + 10t^2 -  5t   +   1
+   *        B_1(t) =  5(1-t)^4 * t    =   5t^5 - 20t^4 + 30t^3 - 20t^2 +  5t
+   *        B_2(t) = 10(1-t)^3 * t^2  = -10t^5 + 30t^4 - 30t^3 + 10t^2
+   *        B_3(t) = 10(1-t)^2 * t^3  =  10t^5 - 20t^4 + 10t^3
+   *        B_4(t) =  5(1-t)   * t^4  =  -5t^5 +  5t^4
+   *        B_5(t) =             t^5  =    t^5
+   *                                      ^       ^       ^       ^       ^       ^
+   *                                      |       |       |       |       |       |
+   *                                      A       B       C       D       E       F
+   *
+   *   Unfortunately, we cannot use forward-differencing to calculate each position through
+   *  the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
+   *
+   *        V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
+   *
+   *   Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
+   *  through t of the Bézier form of V(t), we can determine that:
+   *
+   *        A =    -P_0 +  5*P_1 - 10*P_2 + 10*P_3 -  5*P_4 +  P_5
+   *        B =   5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 +  5*P_4
+   *        C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
+   *        D =  10*P_0 - 20*P_1 + 10*P_2
+   *        E = - 5*P_0 +  5*P_1
+   *        F =     P_0
+   *
+   *   Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
+   *  We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
+   *  which, after simplification, resolves to:
+   *
+   *        A = - 6*P_i +  6*P_t =  6*(P_t - P_i)
+   *        B =  15*P_i - 15*P_t = 15*(P_i - P_t)
+   *        C = -10*P_i + 10*P_t = 10*(P_t - P_i)
+   *        D = 0
+   *        E = 0
+   *        F = P_i
+   *
+   *   As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
+   *  the Bézier curve at each point:
+   *
+   *        V_f(t) = A*t^5 + B*t^4 + C*t^3 + F          [0 <= t <= 1]
+   *
+   *   Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
+   * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
+   * per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid
+   * overflows on the evaluation of the Bézier curve, means we can use
+   *
+   *   t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
+   *   A:   signed Q24.7 ,            |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
+   *   B:   signed Q24.7 ,            |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
+   *   C:   signed Q24.7 ,            |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
+   *   F:   signed Q24.7 ,            |range = +/- 250000     * 128 =      32000000 = 0x01E84800 | 25 bits + sign
+   *
+   *  The trapezoid generator state contains the following information, that we will use to create and evaluate
+   * the Bézier curve:
+   *
+   *  blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
+   *  blk->initial_rate     [VI] = The initial steps per second (=velocity)
+   *  blk->final_rate       [VF] = The ending steps per second  (=velocity)
+   *  and the count of events completed (step_events_completed) [CS] (=distance until now)
+   *
+   *  Note the abbreviations we use in the following formulae are between []s
+   *
+   *  For Any 32bit CPU:
+   *
+   *    At the start of each trapezoid, we calculate the coefficients A,B,C,F and Advance [AV], as follows:
+   *
+   *      A =  6*128*(VF - VI) =  768*(VF - VI)
+   *      B = 15*128*(VI - VF) = 1920*(VI - VF)
+   *      C = 10*128*(VF - VI) = 1280*(VF - VI)
+   *      F =    128*VI        =  128*VI
+   *     AV = (1<<32)/TS      ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
+   *
+   *   And for each point, we will evaluate the curve with the following sequence:
+   *
+   *      void lsrs(uint32_t& d, uint32_t s, int cnt) {
+   *        d = s >> cnt;
+   *      }
+   *      void lsls(uint32_t& d, uint32_t s, int cnt) {
+   *        d = s << cnt;
+   *      }
+   *      void lsrs(int32_t& d, uint32_t s, int cnt) {
+   *        d = uint32_t(s) >> cnt;
+   *      }
+   *      void lsls(int32_t& d, uint32_t s, int cnt) {
+   *        d = uint32_t(s) << cnt;
+   *      }
+   *      void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
+   *        uint64_t res = uint64_t(op1) * op2;
+   *        rlo = uint32_t(res & 0xFFFFFFFF);
+   *        rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
+   *      }
+   *      void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
+   *        int64_t mul = int64_t(op1) * op2;
+   *        int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
+   *        mul += s;
+   *        rlo = int32_t(mul & 0xFFFFFFFF);
+   *        rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
+   *      }
+   *      int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
+   *        register uint32_t flo = 0;
+   *        register uint32_t fhi = bezier_AV * curr_step;
+   *        register uint32_t t = fhi;
+   *        register int32_t alo = bezier_F;
+   *        register int32_t ahi = 0;
+   *        register int32_t A = bezier_A;
+   *        register int32_t B = bezier_B;
+   *        register int32_t C = bezier_C;
+   *
+   *        lsrs(ahi, alo, 1);          // a  = F << 31
+   *        lsls(alo, alo, 31);         //
+   *        umull(flo, fhi, fhi, t);    // f *= t
+   *        umull(flo, fhi, fhi, t);    // f>>=32; f*=t
+   *        lsrs(flo, fhi, 1);          //
+   *        smlal(alo, ahi, flo, C);    // a+=(f>>33)*C
+   *        umull(flo, fhi, fhi, t);    // f>>=32; f*=t
+   *        lsrs(flo, fhi, 1);          //
+   *        smlal(alo, ahi, flo, B);    // a+=(f>>33)*B
+   *        umull(flo, fhi, fhi, t);    // f>>=32; f*=t
+   *        lsrs(flo, fhi, 1);          // f>>=33;
+   *        smlal(alo, ahi, flo, A);    // a+=(f>>33)*A;
+   *        lsrs(alo, ahi, 6);          // a>>=38
+   *
+   *        return alo;
+   *      }
+   *
+   *    This will be rewritten in ARM assembly to get peak performance and will take 43 cycles to execute
+   *
+   *  For AVR, we scale precision of coefficients to make it possible to evaluate the Bézier curve in
+   *    realtime: Let's reduce precision as much as possible. After some experimentation we found that:
+   *
+   *    Assume t and AV with 24 bits is enough
+   *       A =  6*(VF - VI)
+   *       B = 15*(VI - VF)
+   *       C = 10*(VF - VI)
+   *       F =     VI
+   *      AV = (1<<24)/TS   (this is computed at the planner, to offload expensive calculations from the ISR)
+   *
+   *     Instead of storing sign for each coefficient, we will store its absolute value,
+   *    and flag the sign of the A coefficient, so we can save to store the sign bit.
+   *     It always holds that sign(A) = - sign(B) = sign(C)
+   *
+   *     So, the resulting range of the coefficients are:
+   *
+   *       t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
+   *       A:   signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
+   *       B:   signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
+   *       C:   signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
+   *       F:   signed Q24 , range = 250000     =  250000 = 0x0ED090 | 20 bits
+   *
+   *    And for each curve, we estimate its coefficients with:
+   *
+   *      void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
+   *       // Calculate the Bézier coefficients
+   *       if (v1 < v0) {
+   *         A_negative = true;
+   *         bezier_A = 6 * (v0 - v1);
+   *         bezier_B = 15 * (v0 - v1);
+   *         bezier_C = 10 * (v0 - v1);
+   *       }
+   *       else {
+   *         A_negative = false;
+   *         bezier_A = 6 * (v1 - v0);
+   *         bezier_B = 15 * (v1 - v0);
+   *         bezier_C = 10 * (v1 - v0);
+   *       }
+   *       bezier_F = v0;
+   *      }
+   *
+   *    And for each point, we will evaluate the curve with the following sequence:
+   *
+   *      // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
+   *      void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
+   *        r = (uint64_t(op1) * op2) >> 8;
+   *      }
+   *      // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
+   *      void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
+   *        r = (uint32_t(op1) * op2) >> 16;
+   *      }
+   *      // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
+   *      void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
+   *        r = uint24_t((uint64_t(op1) * op2) >> 16);
+   *      }
+   *
+   *      int32_t _eval_bezier_curve(uint32_t curr_step) {
+   *        // To save computing, the first step is always the initial speed
+   *        if (!curr_step)
+   *          return bezier_F;
+   *
+   *        uint16_t t;
+   *        umul24x24to16hi(t, bezier_AV, curr_step);   // t: Range 0 - 1^16 = 16 bits
+   *        uint16_t f = t;
+   *        umul16x16to16hi(f, f, t);           // Range 16 bits (unsigned)
+   *        umul16x16to16hi(f, f, t);           // Range 16 bits : f = t^3  (unsigned)
+   *        uint24_t acc = bezier_F;          // Range 20 bits (unsigned)
+   *        if (A_negative) {
+   *          uint24_t v;
+   *          umul16x24to24hi(v, f, bezier_C);    // Range 21bits
+   *          acc -= v;
+   *          umul16x16to16hi(f, f, t);         // Range 16 bits : f = t^4  (unsigned)
+   *          umul16x24to24hi(v, f, bezier_B);    // Range 22bits
+   *          acc += v;
+   *          umul16x16to16hi(f, f, t);         // Range 16 bits : f = t^5  (unsigned)
+   *          umul16x24to24hi(v, f, bezier_A);    // Range 21bits + 15 = 36bits (plus sign)
+   *          acc -= v;
+   *        }
+   *        else {
+   *          uint24_t v;
+   *          umul16x24to24hi(v, f, bezier_C);    // Range 21bits
+   *          acc += v;
+   *          umul16x16to16hi(f, f, t);       // Range 16 bits : f = t^4  (unsigned)
+   *          umul16x24to24hi(v, f, bezier_B);    // Range 22bits
+   *          acc -= v;
+   *          umul16x16to16hi(f, f, t);               // Range 16 bits : f = t^5  (unsigned)
+   *          umul16x24to24hi(v, f, bezier_A);    // Range 21bits + 15 = 36bits (plus sign)
+   *          acc += v;
+   *        }
+   *        return acc;
+   *      }
+   *    Those functions will be translated into assembler to get peak performance. coefficient calculations takes 70 cycles,
+   *    Bezier point evaluation takes 150 cycles
+   *
+   */
+
+  // For AVR we use assembly to maximize speed
+  void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
+
+    // Store advance
+    bezier_AV = av;
+
+    // Calculate the rest of the coefficients
+    register uint8_t r2 = v0 & 0xFF;
+    register uint8_t r3 = (v0 >> 8) & 0xFF;
+    register uint8_t r12 = (v0 >> 16) & 0xFF;
+    register uint8_t r5 = v1 & 0xFF;
+    register uint8_t r6 = (v1 >> 8) & 0xFF;
+    register uint8_t r7 = (v1 >> 16) & 0xFF;
+    register uint8_t r4,r8,r9,r10,r11;
+
+    __asm__ __volatile__(
+      /* Calculate the Bézier coefficients */
+      /*  %10:%1:%0 = v0*/
+      /*  %5:%4:%3 = v1*/
+      /*  %7:%6:%10 = temporary*/
+      /*  %9 = val (must be high register!)*/
+      /*  %10 (must be high register!)*/
+
+      /* Store initial velocity*/
+      A("sts bezier_F, %0")     
+      A("sts bezier_F+1, %1")     
+      A("sts bezier_F+2, %10")         /* bezier_F = %10:%1:%0 = v0 */
+
+      /* Get delta speed */
+      A("ldi %2,-1")                   /* %2 = 0xFF, means A_negative = true */
+      A("clr %8")                      /* %8 = 0 */
+      A("sub %0,%3")     
+      A("sbc %1,%4")     
+      A("sbc %10,%5")                  /*  v0 -= v1, C=1 if result is negative */
+      A("brcc 1f")                     /* branch if result is positive (C=0), that means v0 >= v1 */
+
+      /*  Result was negative, get the absolute value*/
+      A("com %10")     
+      A("com %1")     
+      A("neg %0")     
+      A("sbc %1,%2")     
+      A("sbc %10,%2")                  /* %10:%1:%0 +1  -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
+      A("clr %2")                      /* %2 = 0, means A_negative = false */
+
+      /*  Store negative flag*/
+      L("1")
+      A("sts A_negative, %2")          /* Store negative flag */
+
+      /*  Compute coefficients A,B and C   [20 cycles worst case]*/
+      A("ldi %9,6")                    /* %9 = 6 */
+      A("mul %0,%9")                   /* r1:r0 = 6*LO(v0-v1) */
+      A("sts bezier_A, r0")     
+      A("mov %6,r1")     
+      A("clr %7")                      /* %7:%6:r0 = 6*LO(v0-v1) */
+      A("mul %1,%9")                   /* r1:r0 = 6*MI(v0-v1) */
+      A("add %6,r0")     
+      A("adc %7,r1")                   /* %7:%6:?? += 6*MI(v0-v1) << 8 */
+      A("mul %10,%9")                  /* r1:r0 = 6*HI(v0-v1) */
+      A("add %7,r0")                   /* %7:%6:?? += 6*HI(v0-v1) << 16 */
+      A("sts bezier_A+1, %6")     
+      A("sts bezier_A+2, %7")          /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
+
+      A("ldi %9,15")                   /* %9 = 15 */
+      A("mul %0,%9")                   /* r1:r0 = 5*LO(v0-v1) */
+      A("sts bezier_B, r0")     
+      A("mov %6,r1")     
+      A("clr %7")                      /* %7:%6:?? = 5*LO(v0-v1) */
+      A("mul %1,%9")                   /* r1:r0 = 5*MI(v0-v1) */
+      A("add %6,r0")     
+      A("adc %7,r1")                   /* %7:%6:?? += 5*MI(v0-v1) << 8 */
+      A("mul %10,%9")                  /* r1:r0 = 5*HI(v0-v1) */
+      A("add %7,r0")                   /* %7:%6:?? += 5*HI(v0-v1) << 16 */
+      A("sts bezier_B+1, %6")     
+      A("sts bezier_B+2, %7")          /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
+
+      A("ldi %9,10")                   /* %9 = 10 */
+      A("mul %0,%9")                   /* r1:r0 = 10*LO(v0-v1) */
+      A("sts bezier_C, r0")     
+      A("mov %6,r1")     
+      A("clr %7")                      /* %7:%6:?? = 10*LO(v0-v1) */
+      A("mul %1,%9")                   /* r1:r0 = 10*MI(v0-v1) */
+      A("add %6,r0")     
+      A("adc %7,r1")                   /* %7:%6:?? += 10*MI(v0-v1) << 8 */
+      A("mul %10,%9")                  /* r1:r0 = 10*HI(v0-v1) */
+      A("add %7,r0")                   /* %7:%6:?? += 10*HI(v0-v1) << 16 */
+      A("sts bezier_C+1, %6")     
+      " sts bezier_C+2, %7"            /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
+      : "+r" (r2),
+        "+d" (r3),
+        "=r" (r4),
+        "+r" (r5),
+        "+r" (r6),
+        "+r" (r7),
+        "=r" (r8),
+        "=r" (r9),
+        "=r" (r10),
+        "=d" (r11),
+        "+r" (r12)
+      :
+      : "r0", "r1", "cc", "memory"
+    );
+  }
+
+  FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
+
+    // If dealing with the first step, save expensive computing and return the initial speed
+    if (!curr_step)
+      return bezier_F;
+
+    register uint8_t r0 = 0; /* Zero register */
+    register uint8_t r2 = (curr_step) & 0xFF;
+    register uint8_t r3 = (curr_step >> 8) & 0xFF;
+    register uint8_t r4 = (curr_step >> 16) & 0xFF;
+    register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
+
+    __asm__ __volatile(
+      /* umul24x24to16hi(t, bezier_AV, curr_step);  t: Range 0 - 1^16 = 16 bits*/
+      A("lds %9,bezier_AV")            /* %9 = LO(AV)*/
+      A("mul %9,%2")                   /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
+      A("mov %7,r1")                   /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
+      A("clr %8")                      /* %8:%7  = LO(bezier_AV)*LO(curr_step) >> 8*/
+      A("lds %10,bezier_AV+1")         /* %10 = MI(AV)*/
+      A("mul %10,%2")                  /* r1:r0  = MI(bezier_AV)*LO(curr_step)*/
+      A("add %7,r0")     
+      A("adc %8,r1")                   /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
+      A("lds r1,bezier_AV+2")          /* r11 = HI(AV)*/
+      A("mul r1,%2")                   /* r1:r0  = HI(bezier_AV)*LO(curr_step)*/
+      A("add %8,r0")                   /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
+      A("mul %9,%3")                   /* r1:r0 =  LO(bezier_AV)*MI(curr_step)*/
+      A("add %7,r0")     
+      A("adc %8,r1")                   /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
+      A("mul %10,%3")                  /* r1:r0 =  MI(bezier_AV)*MI(curr_step)*/
+      A("add %8,r0")                   /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
+      A("mul %9,%4")                   /* r1:r0 =  LO(bezier_AV)*HI(curr_step)*/
+      A("add %8,r0")                   /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
+      /* %8:%7 = t*/
+
+      /* uint16_t f = t;*/
+      A("mov %5,%7")                   /* %6:%5 = f*/
+      A("mov %6,%8")     
+      /* %6:%5 = f*/
+
+      /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
+      A("mul %5,%7")                   /* r1:r0 = LO(f) * LO(t)*/
+      A("mov %9,r1")                   /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
+      A("clr %10")                     /* %10 = 0*/
+      A("clr %11")                     /* %11 = 0*/
+      A("mul %5,%8")                   /* r1:r0 = LO(f) * HI(t)*/
+      A("add %9,r0")                   /* %9 += LO(LO(f) * HI(t))*/
+      A("adc %10,r1")                  /* %10 = HI(LO(f) * HI(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%7")                   /* r1:r0 = HI(f) * LO(t)*/
+      A("add %9,r0")                   /* %9 += LO(HI(f) * LO(t))*/
+      A("adc %10,r1")                  /* %10 += HI(HI(f) * LO(t)) */
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%8")                   /* r1:r0 = HI(f) * HI(t)*/
+      A("add %10,r0")                  /* %10 += LO(HI(f) * HI(t))*/
+      A("adc %11,r1")                  /* %11 += HI(HI(f) * HI(t))*/
+      A("mov %5,%10")                  /* %6:%5 = */
+      A("mov %6,%11")                  /* f = %10:%11*/
+
+      /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3  (unsigned) [17]*/
+      A("mul %5,%7")                   /* r1:r0 = LO(f) * LO(t)*/
+      A("mov %1,r1")                   /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+      A("clr %10")                     /* %10 = 0*/
+      A("clr %11")                     /* %11 = 0*/
+      A("mul %5,%8")                   /* r1:r0 = LO(f) * HI(t)*/
+      A("add %1,r0")                   /* %1 += LO(LO(f) * HI(t))*/
+      A("adc %10,r1")                  /* %10 = HI(LO(f) * HI(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%7")                   /* r1:r0 = HI(f) * LO(t)*/
+      A("add %1,r0")                   /* %1 += LO(HI(f) * LO(t))*/
+      A("adc %10,r1")                  /* %10 += HI(HI(f) * LO(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%8")                   /* r1:r0 = HI(f) * HI(t)*/
+      A("add %10,r0")                  /* %10 += LO(HI(f) * HI(t))*/
+      A("adc %11,r1")                  /* %11 += HI(HI(f) * HI(t))*/
+      A("mov %5,%10")                  /* %6:%5 =*/
+      A("mov %6,%11")                  /* f = %10:%11*/
+      /* [15 +17*2] = [49]*/
+
+      /* %4:%3:%2 will be acc from now on*/
+
+      /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
+      A("clr %9")                      /* "decimal place we get for free"*/
+      A("lds %2,bezier_F")     
+      A("lds %3,bezier_F+1")     
+      A("lds %4,bezier_F+2")           /* %4:%3:%2 = acc*/
+
+      /* if (A_negative) {*/
+      A("lds r0,A_negative")     
+      A("or r0,%0")                    /* Is flag signalling negative? */
+      A("brne 3f")                     /* If yes, Skip next instruction if A was negative*/
+      A("rjmp 1f")                     /* Otherwise, jump */
+
+      /* uint24_t v; */
+      /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
+      /* acc -= v; */
+      L("3")
+      A("lds %10, bezier_C")           /* %10 = LO(bezier_C)*/
+      A("mul %10,%5")                  /* r1:r0 = LO(bezier_C) * LO(f)*/
+      A("sub %9,r1")     
+      A("sbc %2,%0")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
+      A("lds %11, bezier_C+1")         /* %11 = MI(bezier_C)*/
+      A("mul %11,%5")                  /* r1:r0 = MI(bezier_C) * LO(f)*/
+      A("sub %9,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
+      A("lds %1, bezier_C+2")          /* %1 = HI(bezier_C)*/
+      A("mul %1,%5")                   /* r1:r0 = MI(bezier_C) * LO(f)*/
+      A("sub %2,r0")     
+      A("sbc %3,r1")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
+      A("mul %10,%6")                  /* r1:r0 = LO(bezier_C) * MI(f)*/
+      A("sub %9,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
+      A("mul %11,%6")                  /* r1:r0 = MI(bezier_C) * MI(f)*/
+      A("sub %2,r0")     
+      A("sbc %3,r1")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
+      A("mul %1,%6")                   /* r1:r0 = HI(bezier_C) * LO(f)*/
+      A("sub %3,r0")     
+      A("sbc %4,r1")                   /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
+
+      /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3  (unsigned) [17]*/
+      A("mul %5,%7")                   /* r1:r0 = LO(f) * LO(t)*/
+      A("mov %1,r1")                   /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+      A("clr %10")                     /* %10 = 0*/
+      A("clr %11")                     /* %11 = 0*/
+      A("mul %5,%8")                   /* r1:r0 = LO(f) * HI(t)*/
+      A("add %1,r0")                   /* %1 += LO(LO(f) * HI(t))*/
+      A("adc %10,r1")                  /* %10 = HI(LO(f) * HI(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%7")                   /* r1:r0 = HI(f) * LO(t)*/
+      A("add %1,r0")                   /* %1 += LO(HI(f) * LO(t))*/
+      A("adc %10,r1")                  /* %10 += HI(HI(f) * LO(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%8")                   /* r1:r0 = HI(f) * HI(t)*/
+      A("add %10,r0")                  /* %10 += LO(HI(f) * HI(t))*/
+      A("adc %11,r1")                  /* %11 += HI(HI(f) * HI(t))*/
+      A("mov %5,%10")                  /* %6:%5 =*/
+      A("mov %6,%11")                  /* f = %10:%11*/
+
+      /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
+      /* acc += v; */
+      A("lds %10, bezier_B")           /* %10 = LO(bezier_B)*/
+      A("mul %10,%5")                  /* r1:r0 = LO(bezier_B) * LO(f)*/
+      A("add %9,r1")     
+      A("adc %2,%0")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
+      A("lds %11, bezier_B+1")         /* %11 = MI(bezier_B)*/
+      A("mul %11,%5")                  /* r1:r0 = MI(bezier_B) * LO(f)*/
+      A("add %9,r0")     
+      A("adc %2,r1")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
+      A("lds %1, bezier_B+2")          /* %1 = HI(bezier_B)*/
+      A("mul %1,%5")                   /* r1:r0 = MI(bezier_B) * LO(f)*/
+      A("add %2,r0")     
+      A("adc %3,r1")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
+      A("mul %10,%6")                  /* r1:r0 = LO(bezier_B) * MI(f)*/
+      A("add %9,r0")     
+      A("adc %2,r1")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
+      A("mul %11,%6")                  /* r1:r0 = MI(bezier_B) * MI(f)*/
+      A("add %2,r0")     
+      A("adc %3,r1")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
+      A("mul %1,%6")                   /* r1:r0 = HI(bezier_B) * LO(f)*/
+      A("add %3,r0")     
+      A("adc %4,r1")                   /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
+
+      /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5  (unsigned) [17]*/
+      A("mul %5,%7")                   /* r1:r0 = LO(f) * LO(t)*/
+      A("mov %1,r1")                   /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+      A("clr %10")                     /* %10 = 0*/
+      A("clr %11")                     /* %11 = 0*/
+      A("mul %5,%8")                   /* r1:r0 = LO(f) * HI(t)*/
+      A("add %1,r0")                   /* %1 += LO(LO(f) * HI(t))*/
+      A("adc %10,r1")                  /* %10 = HI(LO(f) * HI(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%7")                   /* r1:r0 = HI(f) * LO(t)*/
+      A("add %1,r0")                   /* %1 += LO(HI(f) * LO(t))*/
+      A("adc %10,r1")                  /* %10 += HI(HI(f) * LO(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%8")                   /* r1:r0 = HI(f) * HI(t)*/
+      A("add %10,r0")                  /* %10 += LO(HI(f) * HI(t))*/
+      A("adc %11,r1")                  /* %11 += HI(HI(f) * HI(t))*/
+      A("mov %5,%10")                  /* %6:%5 =*/
+      A("mov %6,%11")                  /* f = %10:%11*/
+
+      /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
+      /* acc -= v; */
+      A("lds %10, bezier_A")           /* %10 = LO(bezier_A)*/
+      A("mul %10,%5")                  /* r1:r0 = LO(bezier_A) * LO(f)*/
+      A("sub %9,r1")     
+      A("sbc %2,%0")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
+      A("lds %11, bezier_A+1")         /* %11 = MI(bezier_A)*/
+      A("mul %11,%5")                  /* r1:r0 = MI(bezier_A) * LO(f)*/
+      A("sub %9,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
+      A("lds %1, bezier_A+2")          /* %1 = HI(bezier_A)*/
+      A("mul %1,%5")                   /* r1:r0 = MI(bezier_A) * LO(f)*/
+      A("sub %2,r0")     
+      A("sbc %3,r1")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
+      A("mul %10,%6")                  /* r1:r0 = LO(bezier_A) * MI(f)*/
+      A("sub %9,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
+      A("mul %11,%6")                  /* r1:r0 = MI(bezier_A) * MI(f)*/
+      A("sub %2,r0")     
+      A("sbc %3,r1")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
+      A("mul %1,%6")                   /* r1:r0 = HI(bezier_A) * LO(f)*/
+      A("sub %3,r0")     
+      A("sbc %4,r1")                   /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
+      A("jmp 2f")                      /* Done!*/
+
+      L("1")
+
+      /* uint24_t v; */
+      /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
+      /* acc += v; */
+      A("lds %10, bezier_C")           /* %10 = LO(bezier_C)*/
+      A("mul %10,%5")                  /* r1:r0 = LO(bezier_C) * LO(f)*/
+      A("add %9,r1")     
+      A("adc %2,%0")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
+      A("lds %11, bezier_C+1")         /* %11 = MI(bezier_C)*/
+      A("mul %11,%5")                  /* r1:r0 = MI(bezier_C) * LO(f)*/
+      A("add %9,r0")     
+      A("adc %2,r1")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
+      A("lds %1, bezier_C+2")          /* %1 = HI(bezier_C)*/
+      A("mul %1,%5")                   /* r1:r0 = MI(bezier_C) * LO(f)*/
+      A("add %2,r0")     
+      A("adc %3,r1")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
+      A("mul %10,%6")                  /* r1:r0 = LO(bezier_C) * MI(f)*/
+      A("add %9,r0")     
+      A("adc %2,r1")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
+      A("mul %11,%6")                  /* r1:r0 = MI(bezier_C) * MI(f)*/
+      A("add %2,r0")     
+      A("adc %3,r1")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
+      A("mul %1,%6")                   /* r1:r0 = HI(bezier_C) * LO(f)*/
+      A("add %3,r0")     
+      A("adc %4,r1")                   /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
+
+      /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3  (unsigned) [17]*/
+      A("mul %5,%7")                   /* r1:r0 = LO(f) * LO(t)*/
+      A("mov %1,r1")                   /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+      A("clr %10")                     /* %10 = 0*/
+      A("clr %11")                     /* %11 = 0*/
+      A("mul %5,%8")                   /* r1:r0 = LO(f) * HI(t)*/
+      A("add %1,r0")                   /* %1 += LO(LO(f) * HI(t))*/
+      A("adc %10,r1")                  /* %10 = HI(LO(f) * HI(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%7")                   /* r1:r0 = HI(f) * LO(t)*/
+      A("add %1,r0")                   /* %1 += LO(HI(f) * LO(t))*/
+      A("adc %10,r1")                  /* %10 += HI(HI(f) * LO(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%8")                   /* r1:r0 = HI(f) * HI(t)*/
+      A("add %10,r0")                  /* %10 += LO(HI(f) * HI(t))*/
+      A("adc %11,r1")                  /* %11 += HI(HI(f) * HI(t))*/
+      A("mov %5,%10")                  /* %6:%5 =*/
+      A("mov %6,%11")                  /* f = %10:%11*/
+
+      /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
+      /* acc -= v;*/
+      A("lds %10, bezier_B")           /* %10 = LO(bezier_B)*/
+      A("mul %10,%5")                  /* r1:r0 = LO(bezier_B) * LO(f)*/
+      A("sub %9,r1")     
+      A("sbc %2,%0")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
+      A("lds %11, bezier_B+1")         /* %11 = MI(bezier_B)*/
+      A("mul %11,%5")                  /* r1:r0 = MI(bezier_B) * LO(f)*/
+      A("sub %9,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
+      A("lds %1, bezier_B+2")          /* %1 = HI(bezier_B)*/
+      A("mul %1,%5")                   /* r1:r0 = MI(bezier_B) * LO(f)*/
+      A("sub %2,r0")     
+      A("sbc %3,r1")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
+      A("mul %10,%6")                  /* r1:r0 = LO(bezier_B) * MI(f)*/
+      A("sub %9,r0")     
+      A("sbc %2,r1")     
+      A("sbc %3,%0")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
+      A("mul %11,%6")                  /* r1:r0 = MI(bezier_B) * MI(f)*/
+      A("sub %2,r0")     
+      A("sbc %3,r1")     
+      A("sbc %4,%0")                   /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
+      A("mul %1,%6")                   /* r1:r0 = HI(bezier_B) * LO(f)*/
+      A("sub %3,r0")     
+      A("sbc %4,r1")                   /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
+
+      /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5  (unsigned) [17]*/
+      A("mul %5,%7")                   /* r1:r0 = LO(f) * LO(t)*/
+      A("mov %1,r1")                   /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
+      A("clr %10")                     /* %10 = 0*/
+      A("clr %11")                     /* %11 = 0*/
+      A("mul %5,%8")                   /* r1:r0 = LO(f) * HI(t)*/
+      A("add %1,r0")                   /* %1 += LO(LO(f) * HI(t))*/
+      A("adc %10,r1")                  /* %10 = HI(LO(f) * HI(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%7")                   /* r1:r0 = HI(f) * LO(t)*/
+      A("add %1,r0")                   /* %1 += LO(HI(f) * LO(t))*/
+      A("adc %10,r1")                  /* %10 += HI(HI(f) * LO(t))*/
+      A("adc %11,%0")                  /* %11 += carry*/
+      A("mul %6,%8")                   /* r1:r0 = HI(f) * HI(t)*/
+      A("add %10,r0")                  /* %10 += LO(HI(f) * HI(t))*/
+      A("adc %11,r1")                  /* %11 += HI(HI(f) * HI(t))*/
+      A("mov %5,%10")                  /* %6:%5 =*/
+      A("mov %6,%11")                  /* f = %10:%11*/
+
+      /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
+      /* acc += v; */
+      A("lds %10, bezier_A")           /* %10 = LO(bezier_A)*/
+      A("mul %10,%5")                  /* r1:r0 = LO(bezier_A) * LO(f)*/
+      A("add %9,r1")     
+      A("adc %2,%0")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
+      A("lds %11, bezier_A+1")         /* %11 = MI(bezier_A)*/
+      A("mul %11,%5")                  /* r1:r0 = MI(bezier_A) * LO(f)*/
+      A("add %9,r0")     
+      A("adc %2,r1")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
+      A("lds %1, bezier_A+2")          /* %1 = HI(bezier_A)*/
+      A("mul %1,%5")                   /* r1:r0 = MI(bezier_A) * LO(f)*/
+      A("add %2,r0")     
+      A("adc %3,r1")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
+      A("mul %10,%6")                  /* r1:r0 = LO(bezier_A) * MI(f)*/
+      A("add %9,r0")     
+      A("adc %2,r1")     
+      A("adc %3,%0")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
+      A("mul %11,%6")                  /* r1:r0 = MI(bezier_A) * MI(f)*/
+      A("add %2,r0")     
+      A("adc %3,r1")     
+      A("adc %4,%0")                   /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
+      A("mul %1,%6")                   /* r1:r0 = HI(bezier_A) * LO(f)*/
+      A("add %3,r0")     
+      A("adc %4,r1")                   /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
+      L("2")
+      " clr __zero_reg__"              /* C runtime expects r1 = __zero_reg__ = 0 */
+      : "+r"(r0),
+        "+r"(r1),
+        "+r"(r2),
+        "+r"(r3),
+        "+r"(r4),
+        "+r"(r5),
+        "+r"(r6),
+        "+r"(r7),
+        "+r"(r8),
+        "+r"(r9),
+        "+r"(r10),
+        "+r"(r11)
+      :
+      :"cc","r0","r1"
+    );
+    return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
+  }
+
+#endif // BEZIER_JERK_CONTROL
+
 /**
  * Stepper Driver Interrupt
  *
@@ -463,7 +1209,54 @@ void Stepper::isr() {
         if (!(current_block = planner.get_current_block())) return;
       }
 
-      trapezoid_generator_reset();
+      // Initialize the trapezoid generator from the current block.
+      static int8_t last_extruder = -1;
+
+      #if ENABLED(LIN_ADVANCE)
+        #if E_STEPPERS > 1
+          if (current_block->active_extruder != last_extruder) {
+            current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
+            LA_active_extruder = current_block->active_extruder;
+          }
+        #endif
+
+        if ((use_advance_lead = current_block->use_advance_lead)) {
+          LA_decelerate_after = current_block->decelerate_after;
+          final_adv_steps = current_block->final_adv_steps;
+          max_adv_steps = current_block->max_adv_steps;
+        }
+      #endif
+
+      if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
+        last_direction_bits = current_block->direction_bits;
+        last_extruder = current_block->active_extruder;
+        set_directions();
+      }
+
+      // No acceleration / deceleration time elapsed so far
+      acceleration_time = deceleration_time = 0;
+
+      // No step events completed so far
+      step_events_completed = 0;
+
+      // step_rate to timer interval
+      OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
+
+      // make a note of the number of step loops required at nominal speed
+      step_loops_nominal = step_loops;
+
+      #if DISABLED(BEZIER_JERK_CONTROL)
+        // Set as deceleration point the initial rate of the block
+        acc_step_rate = current_block->initial_rate;
+      #endif
+
+      #if ENABLED(BEZIER_JERK_CONTROL)
+        // Initialize the Bézier speed curve
+        _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
+
+        // We have not started the 2nd half of the trapezoid
+        bezier_2nd_half = false;
+      #endif
 
       // Initialize Bresenham counters to 1/2 the ceiling
       counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
@@ -705,11 +1498,19 @@ void Stepper::isr() {
   // Calculate new timer value
   if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
 
-    MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
-    acc_step_rate += current_block->initial_rate;
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      // Get the next speed to use (Jerk limited!)
+      uint16_t acc_step_rate =
+        acceleration_time < current_block->acceleration_time
+          ? _eval_bezier_curve(acceleration_time)
+          : current_block->cruise_rate;
+    #else
+      MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
+      acc_step_rate += current_block->initial_rate;
 
-    // upper limit
-    NOMORE(acc_step_rate, current_block->nominal_rate);
+      // upper limit
+      NOMORE(acc_step_rate, current_block->nominal_rate);
+    #endif
 
     // step_rate to timer interval
     const uint16_t interval = calc_timer_interval(acc_step_rate);
@@ -734,14 +1535,32 @@ void Stepper::isr() {
   }
   else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
     uint16_t step_rate;
-    MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 
-    if (step_rate < acc_step_rate) { // Still decelerating?
-      step_rate = acc_step_rate - step_rate;
-      NOLESS(step_rate, current_block->final_rate);
-    }
-    else
-      step_rate = current_block->final_rate;
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      // If this is the 1st time we process the 2nd half of the trapezoid...
+      if (!bezier_2nd_half) {
+
+        // Initialize the Bézier speed curve
+        _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
+        bezier_2nd_half = true;
+      }
+
+      // Calculate the next speed to use
+      step_rate = deceleration_time < current_block->deceleration_time
+        ? _eval_bezier_curve(deceleration_time)
+        : current_block->final_rate;
+    #else
+
+      // Using the old trapezoidal control
+      MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
+
+      if (step_rate < acc_step_rate) { // Still decelerating?
+        step_rate = acc_step_rate - step_rate;
+        NOLESS(step_rate, current_block->final_rate);
+      }
+      else
+        step_rate = current_block->final_rate;
+    #endif
 
     // step_rate to timer interval
     const uint16_t interval = calc_timer_interval(step_rate);
@@ -1104,6 +1923,7 @@ void Stepper::init() {
   // Init Stepper ISR to 122 Hz for quick starting
   OCR1A = 0x4000;
   TCNT1 = 0;
+
   ENABLE_STEPPER_DRIVER_INTERRUPT();
 
   endstops.enable(true); // Start with endstops active. After homing they can be disabled
diff --git a/Marlin/stepper.h b/Marlin/stepper.h
index 597600e805fbf0e8b24f163f351bf05ba3be81ac..087b8593e4960ad61fde1b1f63462091d352bf93 100644
--- a/Marlin/stepper.h
+++ b/Marlin/stepper.h
@@ -55,6 +55,7 @@ extern Stepper stepper;
 #define ENABLE_STEPPER_DRIVER_INTERRUPT()  SBI(TIMSK1, OCIE1A)
 #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
 #define STEPPER_ISR_ENABLED()             TEST(TIMSK1, OCIE1A)
+#define HAL_STEPPER_TIMER_RATE            ((F_CPU) * 0.125)
 
 // intRes = intIn1 * intIn2 >> 16
 // uses:
@@ -62,16 +63,16 @@ extern Stepper stepper;
 // r27 to store the byte 1 of the 24 bit result
 #define MultiU16X8toH16(intRes, charIn1, intIn2) \
   asm volatile ( \
-                 "clr r26 \n\t" \
-                 "mul %A1, %B2 \n\t" \
-                 "movw %A0, r0 \n\t" \
-                 "mul %A1, %A2 \n\t" \
-                 "add %A0, r1 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "lsr r0 \n\t" \
-                 "adc %A0, r26 \n\t" \
-                 "adc %B0, r26 \n\t" \
-                 "clr r1 \n\t" \
+                 A("clr r26") \
+                 A("mul %A1, %B2") \
+                 A("movw %A0, r0") \
+                 A("mul %A1, %A2") \
+                 A("add %A0, r1") \
+                 A("adc %B0, r26") \
+                 A("lsr r0") \
+                 A("adc %A0, r26") \
+                 A("adc %B0, r26") \
+                 A("clr r1") \
                  : \
                  "=&r" (intRes) \
                  : \
@@ -122,6 +123,16 @@ class Stepper {
     static int32_t counter_X, counter_Y, counter_Z, counter_E;
     static volatile uint32_t step_events_completed; // The number of step events executed in the current block
 
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      static int32_t bezier_A,     // A coefficient in Bézier speed curve
+                     bezier_B,     // B coefficient in Bézier speed curve
+                     bezier_C;     // C coefficient in Bézier speed curve
+      static uint32_t bezier_F,    // F coefficient in Bézier speed curve
+                      bezier_AV;   // AV coefficient in Bézier speed curve
+      static bool A_negative,      // If A coefficient was negative
+                  bezier_2nd_half; // If Bézier curve has been initialized or not
+    #endif
+
     #if ENABLED(LIN_ADVANCE)
 
       static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early".
@@ -145,8 +156,10 @@ class Stepper {
     static int32_t acceleration_time, deceleration_time;
     static uint8_t step_loops, step_loops_nominal;
 
-    static uint16_t OCR1A_nominal,
-                    acc_step_rate; // needed for deceleration start point
+    static uint16_t OCR1A_nominal;
+    #if DISABLED(BEZIER_JERK_CONTROL)
+      static uint16_t acc_step_rate; // needed for deceleration start point
+    #endif
 
     static volatile int32_t endstops_trigsteps[XYZ];
     static volatile int32_t endstops_stepsTotal, endstops_stepsDone;
@@ -330,8 +343,8 @@ class Stepper {
 
   private:
 
-    FORCE_INLINE static unsigned short calc_timer_interval(unsigned short step_rate) {
-      unsigned short timer;
+    FORCE_INLINE static uint16_t calc_timer_interval(uint16_t step_rate) {
+      uint16_t timer;
 
       NOMORE(step_rate, MAX_STEP_FREQUENCY);
 
@@ -370,43 +383,10 @@ class Stepper {
       return timer;
     }
 
-    // Initialize the trapezoid generator from the current block.
-    // Called whenever a new block begins.
-    FORCE_INLINE static void trapezoid_generator_reset() {
-
-      static int8_t last_extruder = -1;
-
-      #if ENABLED(LIN_ADVANCE)
-        #if E_STEPPERS > 1
-          if (current_block->active_extruder != last_extruder) {
-            current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
-            LA_active_extruder = current_block->active_extruder;
-          }
-        #endif
-
-        if ((use_advance_lead = current_block->use_advance_lead)) {
-          LA_decelerate_after = current_block->decelerate_after;
-          final_adv_steps = current_block->final_adv_steps;
-          max_adv_steps = current_block->max_adv_steps;
-        }
-      #endif
-
-      if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
-        last_direction_bits = current_block->direction_bits;
-        last_extruder = current_block->active_extruder;
-        set_directions();
-      }
-
-      deceleration_time = 0;
-      // step_rate to timer interval
-      OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
-      // make a note of the number of step loops required at nominal speed
-      step_loops_nominal = step_loops;
-      acc_step_rate = current_block->initial_rate;
-      acceleration_time = calc_timer_interval(acc_step_rate);
-      _NEXT_ISR(acceleration_time);
-
-    }
+    #if ENABLED(BEZIER_JERK_CONTROL)
+      static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
+      static int32_t _eval_bezier_curve(const uint32_t curr_step);
+    #endif
 
     #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
       static void digipot_init();