diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h
index d507832292b572e4c57c16f7b0edcabfe556bb07..c630b0f785833e385f64d59b65c71467ad6bd78d 100644
--- a/Marlin/Configuration.h
+++ b/Marlin/Configuration.h
@@ -63,6 +63,43 @@
 
 #define POWER_SUPPLY 1
 
+
+//===========================================================================
+//============================== Delta Settings =============================
+//===========================================================================
+// Enable DELTA kinematics
+#define DELTA
+
+// Make delta curves from many straight lines (linear interpolation).
+// This is a trade-off between visible corners (not enough segments)
+// and processor overload (too many expensive sqrt calls).
+#define DELTA_SEGMENTS_PER_SECOND 200
+
+// Center-to-center distance of the holes in the diagonal push rods.
+#define DELTA_DIAGONAL_ROD 250.0 // mm
+
+// Horizontal offset from middle of printer to smooth rod center.
+#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
+
+// Horizontal offset of the universal joints on the end effector.
+#define DELTA_EFFECTOR_OFFSET 33.0 // mm
+
+// Horizontal offset of the universal joints on the carriages.
+#define DELTA_CARRIAGE_OFFSET 18.0 // mm
+
+// Effective horizontal distance bridged by diagonal push rods.
+#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
+
+// Effective X/Y positions of the three vertical towers.
+#define SIN_60 0.8660254037844386
+#define COS_60 0.5
+#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
+#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
+#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
+#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
+#define DELTA_TOWER3_X 0.0 // back middle tower
+#define DELTA_TOWER3_Y DELTA_RADIUS
+
 //===========================================================================
 //=============================Thermal Settings  ============================
 //===========================================================================
@@ -128,8 +165,8 @@
 // PID settings:
 // Comment the following line to disable PID and enable bang-bang.
 #define PIDTEMP
-#define BANG_MAX 256 // limits current to nozzle while in bang-bang mode; 256=full current
-#define PID_MAX 256 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 256=full current
+#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
+#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
 #ifdef PIDTEMP
   //#define PID_DEBUG // Sends debug data to the serial port.
   //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
@@ -172,9 +209,9 @@
 
 // This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
 // all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
-// setting this to anything other than 256 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
+// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
 // so you shouldn't use it unless you are OK with PWM on your bed.  (see the comment on enabling PIDTEMPBED)
-#define MAX_BED_POWER 256 // limits duty cycle to bed; 256=full current
+#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
 
 #ifdef PIDTEMPBED
 //120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
@@ -287,9 +324,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
 //#define BED_CENTER_AT_0_0  // If defined, the center of the bed is at (X=0, Y=0)
 
 //Manual homing switch locations:
+// For deltabots this means top and center of the cartesian print volume.
 #define MANUAL_X_HOME_POS 0
 #define MANUAL_Y_HOME_POS 0
 #define MANUAL_Z_HOME_POS 0
+//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
 
 //// MOVEMENT SETTINGS
 #define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h
index 60bd16ad276a41ab406ccdd92216b59ca092e91c..c9759eb219dcaa14b316fe8d356f100c497dd9bc 100644
--- a/Marlin/Marlin.h
+++ b/Marlin/Marlin.h
@@ -157,6 +157,9 @@ void FlushSerialRequestResend();
 void ClearToSend();
 
 void get_coordinates();
+#ifdef DELTA
+void calculate_delta(float cartesian[3]);
+#endif
 void prepare_move();
 void kill();
 void Stop();
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index f2bcb9a385ee29f36a3da8963d5e3494472e224b..8c771685f462469ad32ae03f2426ac4995ede452 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -198,6 +198,9 @@ int EtoPPressure=0;
 //===========================================================================
 const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
 static float destination[NUM_AXIS] = {  0.0, 0.0, 0.0, 0.0};
+#ifdef DELTA
+static float delta[3] = {0.0, 0.0, 0.0};
+#endif
 static float offset[3] = {0.0, 0.0, 0.0};
 static bool home_all_axis = true;
 static float feedrate = 1500.0, next_feedrate, saved_feedrate;
@@ -806,8 +809,8 @@ void process_commands()
         destination[i] = current_position[i];
       }
       feedrate = 0.0;
-      home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
-
+      home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])))
+                    || ((code_seen(axis_codes[0])) && (code_seen(axis_codes[1])) && (code_seen(axis_codes[2])));
       #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
       if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
         HOMEAXIS(Z);
@@ -836,6 +839,10 @@ void process_commands()
         feedrate = 0.0;
         st_synchronize();
         endstops_hit_on_purpose();
+
+        current_position[X_AXIS] = destination[X_AXIS];
+        current_position[Y_AXIS] = destination[Y_AXIS];
+        current_position[Z_AXIS] = destination[Z_AXIS];
       }
       #endif
 
@@ -847,14 +854,14 @@ void process_commands()
       if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
         HOMEAXIS(Y);
       }
-
+      
       #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
       if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
         HOMEAXIS(Z);
       }
       #endif
-
-      if(code_seen(axis_codes[X_AXIS]))
+      
+      if(code_seen(axis_codes[X_AXIS])) 
       {
         if(code_value_long() != 0) {
           current_position[X_AXIS]=code_value()+add_homeing[0];
@@ -872,8 +879,12 @@ void process_commands()
           current_position[Z_AXIS]=code_value()+add_homeing[2];
         }
       }
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-
+      #ifdef DELTA
+        calculate_delta(current_position);
+        plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
+      #else
+        plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      #endif
       #ifdef ENDSTOPS_ONLY_FOR_HOMING
         enable_endstops(false);
       #endif
@@ -2051,11 +2062,64 @@ void clamp_to_software_endstops(float target[3])
   }
 }
 
+#ifdef DELTA
+void calculate_delta(float cartesian[3])
+{
+  delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
+                       - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
+                       - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
+                       ) + cartesian[Z_AXIS];
+  delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
+                       - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
+                       - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
+                       ) + cartesian[Z_AXIS];
+  delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
+                       - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
+                       - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
+                       ) + cartesian[Z_AXIS];
+  /*
+  SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
+  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
+  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
+
+  SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
+  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
+  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
+  */
+}
+#endif
+
 void prepare_move()
 {
   clamp_to_software_endstops(destination);
 
   previous_millis_cmd = millis();
+#ifdef DELTA
+  float difference[NUM_AXIS];
+  for (int8_t i=0; i < NUM_AXIS; i++) {
+    difference[i] = destination[i] - current_position[i];
+  }
+  float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
+                            sq(difference[Y_AXIS]) +
+                            sq(difference[Z_AXIS]));
+  if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
+  if (cartesian_mm < 0.000001) { return; }
+  float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
+  int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
+  // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
+  // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
+  // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
+  for (int s = 1; s <= steps; s++) {
+    float fraction = float(s) / float(steps);
+    for(int8_t i=0; i < NUM_AXIS; i++) {
+      destination[i] = current_position[i] + difference[i] * fraction;
+    }
+    calculate_delta(destination);
+    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
+                     destination[E_AXIS], feedrate*feedmultiply/60/100.0,
+                     active_extruder);
+  }
+#else
   // Do not use feedmultiply for E or Z only moves
   if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
       plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@@ -2063,6 +2127,7 @@ void prepare_move()
   else {
     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
   }
+#endif
   for(int8_t i=0; i < NUM_AXIS; i++) {
     current_position[i] = destination[i];
   }
@@ -2305,4 +2370,5 @@ bool setTargetedHotend(int code){
     }
   }
   return false;
-}
\ No newline at end of file
+}
+