diff --git a/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h b/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h
index 8709803665978c5e6578f925fed4a91e4719109c..3261eceb865fd866efe609e2154c0ff7344f8216 100644
--- a/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h
+++ b/Marlin/src/config/examples/delta/FLSUN/auto_calibrate/Configuration.h
@@ -497,7 +497,7 @@
     // set the default number of probe points : n*n (1 -> 7)
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
 
-    // Enable and set these values based on results of 'G33 A1'
+    // Enable and set these values based on results of 'G33 A'
     //#define H_FACTOR 1.01
     //#define R_FACTOR 2.61
     //#define A_FACTOR 0.87
@@ -505,7 +505,7 @@
   #endif
 
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
     #define DELTA_CALIBRATION_RADIUS 73.5 // mm
     // Set the steprate for papertest probing
     #define PROBE_MANUALLY_STEP 0.025
diff --git a/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h b/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h
index 4bc281ca71204a277490c169dfdcd1249ecacd0f..2684c46c17f6e20055b827dc462e52b31424f617 100644
--- a/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h
+++ b/Marlin/src/config/examples/delta/FLSUN/kossel_mini/Configuration.h
@@ -497,7 +497,7 @@
     // set the default number of probe points : n*n (1 -> 7)
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
 
-    // Enable and set these values based on results of 'G33 A1'
+    // Enable and set these values based on results of 'G33 A'
     //#define H_FACTOR 1.01
     //#define R_FACTOR 2.61
     //#define A_FACTOR 0.87
@@ -505,7 +505,7 @@
   #endif
 
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
     #define DELTA_CALIBRATION_RADIUS 73.5 // mm
     // Set the steprate for papertest probing
     #define PROBE_MANUALLY_STEP 0.025
diff --git a/Marlin/src/config/examples/delta/generic/Configuration.h b/Marlin/src/config/examples/delta/generic/Configuration.h
index 589f269133d674a63c083dda08160b3defe5c6d3..751c4d95eb7a6342e9ff35d642235672a3c0ac07 100644
--- a/Marlin/src/config/examples/delta/generic/Configuration.h
+++ b/Marlin/src/config/examples/delta/generic/Configuration.h
@@ -487,7 +487,7 @@
     // set the default number of probe points : n*n (1 -> 7)
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
 
-    // Enable and set these values based on results of 'G33 A1'
+    // Enable and set these values based on results of 'G33 A'
     //#define H_FACTOR 1.01
     //#define R_FACTOR 2.61
     //#define A_FACTOR 0.87
@@ -495,7 +495,7 @@
   #endif
 
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
     #define DELTA_CALIBRATION_RADIUS 121.5 // mm
     // Set the steprate for papertest probing
     #define PROBE_MANUALLY_STEP 0.025
diff --git a/Marlin/src/config/examples/delta/kossel_mini/Configuration.h b/Marlin/src/config/examples/delta/kossel_mini/Configuration.h
index 4925e632a80c156ee6f02e374ba9ef9783549f49..8dc1e7edfa17961e4d0a394941ab3d85bab76b07 100644
--- a/Marlin/src/config/examples/delta/kossel_mini/Configuration.h
+++ b/Marlin/src/config/examples/delta/kossel_mini/Configuration.h
@@ -487,7 +487,7 @@
     // set the default number of probe points : n*n (1 -> 7)
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
 
-    // Enable and set these values based on results of 'G33 A1'
+    // Enable and set these values based on results of 'G33 A'
     //#define H_FACTOR 1.01
     //#define R_FACTOR 2.61
     //#define A_FACTOR 0.87
@@ -495,7 +495,7 @@
   #endif
 
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
     #define DELTA_CALIBRATION_RADIUS 78.0 // mm
     // Set the steprate for papertest probing
     #define PROBE_MANUALLY_STEP 0.025
diff --git a/Marlin/src/config/examples/delta/kossel_pro/Configuration.h b/Marlin/src/config/examples/delta/kossel_pro/Configuration.h
index a7d144188080140bf473483707d80e4504002ab9..61bf8ccb3a153600059708c42176a6ab8ee2d530 100644
--- a/Marlin/src/config/examples/delta/kossel_pro/Configuration.h
+++ b/Marlin/src/config/examples/delta/kossel_pro/Configuration.h
@@ -473,7 +473,7 @@
     // set the default number of probe points : n*n (1 -> 7)
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
 
-    // Enable and set these values based on results of 'G33 A1'
+    // Enable and set these values based on results of 'G33 A'
     //#define H_FACTOR 1.01
     //#define R_FACTOR 2.61
     //#define A_FACTOR 0.87
@@ -481,7 +481,7 @@
   #endif
 
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
     #define DELTA_CALIBRATION_RADIUS 110.0 // mm
     // Set the steprate for papertest probing
     #define PROBE_MANUALLY_STEP 0.025
diff --git a/Marlin/src/config/examples/delta/kossel_xl/Configuration.h b/Marlin/src/config/examples/delta/kossel_xl/Configuration.h
index 4ff579dcb7ad6216488ae508a829a2dfc110a6b0..abfbb8aa57db9cbac30f2f04bd1394a445ec5dae 100644
--- a/Marlin/src/config/examples/delta/kossel_xl/Configuration.h
+++ b/Marlin/src/config/examples/delta/kossel_xl/Configuration.h
@@ -491,7 +491,7 @@
     // set the default number of probe points : n*n (1 -> 7)
     #define DELTA_CALIBRATION_DEFAULT_POINTS 4
 
-    // Enable and set these values based on results of 'G33 A1'
+    // Enable and set these values based on results of 'G33 A'
     //#define H_FACTOR 1.01
     //#define R_FACTOR 2.61
     //#define A_FACTOR 0.87
@@ -499,7 +499,7 @@
   #endif
 
   #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)
-    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS*0.869 for non-eccentric probes
+    // Set the radius for the calibration probe points - max DELTA_PRINTABLE_RADIUS for non-eccentric probes
     #define DELTA_CALIBRATION_RADIUS 121.5 // mm
     // Set the steprate for papertest probing
     #define PROBE_MANUALLY_STEP 0.025
diff --git a/Marlin/src/gcode/calibrate/G33.cpp b/Marlin/src/gcode/calibrate/G33.cpp
index bd7fbe38b7efbcd2b6acf7c9287df1a29f13d7c1..3bf01a78eb7e90ba9d57a5010f81715dc28edbd1 100644
--- a/Marlin/src/gcode/calibrate/G33.cpp
+++ b/Marlin/src/gcode/calibrate/G33.cpp
@@ -37,6 +37,26 @@
   #include "../../feature/bedlevel/bedlevel.h"
 #endif
 
+constexpr uint8_t _7P_STEP = 1,              // 7-point step - to change number of calibration points
+                  _4P_STEP = _7P_STEP * 2,   // 4-point step
+                  NPP      = _7P_STEP * 6;   // number of calibration points on the radius
+enum CalEnum {                               // the 7 main calibration points - add definitions if needed
+  CEN      = 0,
+  __A      = 1,
+  _AB      = __A + _7P_STEP,
+  __B      = _AB + _7P_STEP,
+  _BC      = __B + _7P_STEP,
+  __C      = _BC + _7P_STEP,
+  _CA      = __C + _7P_STEP,
+};
+
+#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) 
+#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N) 
+#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
+#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
+#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
+#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
+
 static void print_signed_float(const char * const prefix, const float &f) {
   SERIAL_PROTOCOLPGM("  ");
   serialprintPGM(prefix);
@@ -69,13 +89,13 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles) {
   SERIAL_EOL();
 }
 
-static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) {
+static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
   SERIAL_PROTOCOLPGM(".    ");
-  print_signed_float(PSTR("c"), z_at_pt[0]);
+  print_signed_float(PSTR("c"), z_at_pt[CEN]);
   if (tower_points) {
-    print_signed_float(PSTR(" x"), z_at_pt[1]);
-    print_signed_float(PSTR(" y"), z_at_pt[5]);
-    print_signed_float(PSTR(" z"), z_at_pt[9]);
+    print_signed_float(PSTR(" x"), z_at_pt[__A]);
+    print_signed_float(PSTR(" y"), z_at_pt[__B]);
+    print_signed_float(PSTR(" z"), z_at_pt[__C]);
   }
   if (tower_points && opposite_points) {
     SERIAL_EOL();
@@ -83,9 +103,9 @@ static void print_G33_results(const float z_at_pt[13], const bool tower_points,
     SERIAL_PROTOCOL_SP(13);
   }
   if (opposite_points) {
-    print_signed_float(PSTR("yz"), z_at_pt[7]);
-    print_signed_float(PSTR("zx"), z_at_pt[11]);
-    print_signed_float(PSTR("xy"), z_at_pt[3]);
+    print_signed_float(PSTR("yz"), z_at_pt[_BC]);
+    print_signed_float(PSTR("zx"), z_at_pt[_CA]);
+    print_signed_float(PSTR("xy"), z_at_pt[_AB]);
   }
   SERIAL_EOL();
 }
@@ -112,85 +132,111 @@ static void G33_cleanup(
   #endif
 }
 
-static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
+static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
   const bool _0p_calibration      = probe_points == 0,
              _1p_calibration      = probe_points == 1,
              _4p_calibration      = probe_points == 2,
              _4p_opposite_points  = _4p_calibration && !towers_set,
              _7p_calibration      = probe_points >= 3 || probe_points == 0,
-             _7p_half_circle      = probe_points == 3,
-             _7p_double_circle    = probe_points == 5,
-             _7p_triple_circle    = probe_points == 6,
-             _7p_quadruple_circle = probe_points == 7,
+             _7p_no_intermediates = probe_points == 3,
+             _7p_1_intermediates  = probe_points == 4,
+             _7p_2_intermediates  = probe_points == 5,
+             _7p_4_intermediates  = probe_points == 6,
+             _7p_6_intermediates  = probe_points == 7,
+             _7p_8_intermediates  = probe_points == 8,
+             _7p_11_intermediates = probe_points == 9,
+             _7p_14_intermediates = probe_points == 10,
              _7p_intermed_points  = probe_points >= 4,
-             _7p_multi_circle     = probe_points >= 5;
+             _7p_6_centre         = probe_points >= 5 && probe_points <= 7,
+             _7p_9_centre         = probe_points >= 8;
 
   #if DISABLED(PROBE_MANUALLY)
     const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
                 dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
   #endif
 
-  for (uint8_t i = 0; i <= 12; i++) z_at_pt[i] = 0.0;
+      LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
 
   if (!_0p_calibration) {
 
-    if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
+    if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
       #if ENABLED(PROBE_MANUALLY)
-        z_at_pt[0] += lcd_probe_pt(0, 0);
+        z_at_pt[CEN] += lcd_probe_pt(0, 0);
       #else
-        z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
+        z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false);
       #endif
     }
 
     if (_7p_calibration) { // probe extra center points
-      for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
-        const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
+      const float start  = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
+                  steps  = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
+      I_LOOP_CAL_PT(axis, start, steps) {
+        const float a = RADIANS(210 + (360 / NPP) *  (axis - 1)),
+                    r = delta_calibration_radius * 0.1;
         #if ENABLED(PROBE_MANUALLY)
-          z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
+          z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r);
         #else
-          z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
+          z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
         #endif
       }
-      z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
+      z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
     }
 
     if (!_1p_calibration) {  // probe the radius
+      const CalEnum start  = _4p_opposite_points ? _AB : __A;
+      const float   steps  = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
+                             _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 +  9c = 81
+                             _7p_8_intermediates  ? _7P_STEP /  9.0 : //  9r * 6 + 10c = 64
+                             _7p_6_intermediates  ? _7P_STEP /  7.0 : //  7r * 6 +  7c = 49
+                             _7p_4_intermediates  ? _7P_STEP /  5.0 : //  5r * 6 +  6c = 36
+                             _7p_2_intermediates  ? _7P_STEP /  3.0 : //  3r * 6 +  7c = 25 
+                             _7p_1_intermediates  ? _7P_STEP /  2.0 : //  2r * 6 +  4c = 16 
+                             _7p_no_intermediates ? _7P_STEP :        //  1r * 6 +  3c = 9
+                             _4P_STEP;                                // .5r * 6 +  1c = 4
       bool zig_zag = true;
-      const uint8_t start = _4p_opposite_points ? 3 : 1,
-                    step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
-      for (uint8_t axis = start; axis <= 12; axis += step) {
-        const float zigadd = (zig_zag ? 0.5 : 0.0),
-                    offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
-                                     _7p_triple_circle    ? zigadd + 0.5 :
-                                     _7p_double_circle    ? zigadd : 0;
-        for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
-          const float a = RADIANS(180 + 30 * axis),
-                      r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
+      F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
+        const int8_t offset = _7p_9_centre ? 1 : 0;
+        for (int8_t circle = -offset; circle <= offset; circle++) {
+          const float a = RADIANS(210 + (360 / NPP) *  (axis - 1)),
+                      r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
+                      interpol = fmod(axis, 1);
           #if ENABLED(PROBE_MANUALLY)
-            z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
+             float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r);
           #else
-            z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
+            float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
           #endif
+          // split probe point to neighbouring calibration points
+          z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
+          z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
         }
         zig_zag = !zig_zag;
-        z_at_pt[axis] /= (2 * offset_circles + 1);
       }
+      if (_7p_intermed_points)
+        LOOP_CAL_RAD(axis) {
+/*
+        // average intermediate points to towers and opposites - only required with _7P_STEP >= 2
+          for (int8_t i = 1; i < _7P_STEP; i++) {
+            const float interpol = i * (1.0 / _7P_STEP);
+            z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1]
+                             + z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90)));
+          }
+*/
+          z_at_pt[axis] /= _7P_STEP  / steps;
+        }
     }
 
-    if (_7p_intermed_points) // average intermediates to tower and opposites
-      for (uint8_t axis = 1; axis <= 12; axis += 2)
-        z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
 
-    float S1 = z_at_pt[0],
-          S2 = sq(z_at_pt[0]);
+    float S1 = z_at_pt[CEN],
+          S2 = sq(z_at_pt[CEN]);
     int16_t N = 1;
-    if (!_1p_calibration) // std dev from zero plane
-      for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis <= 12; axis += (_4p_calibration ? 4 : 2)) {
+    if (!_1p_calibration) { // std dev from zero plane
+      LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
         S1 += z_at_pt[axis];
         S2 += sq(z_at_pt[axis]);
         N++;
       }
-    return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
+      return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
+    }
   }
 
   return 0.00001;
@@ -199,8 +245,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
 #if DISABLED(PROBE_MANUALLY)
 
   static void G33_auto_tune() {
-    float z_at_pt[13]      = { 0.0 },
-          z_at_pt_base[13] = { 0.0 },
+    float z_at_pt[NPP + 1]      = { 0.0 },
+          z_at_pt_base[NPP + 1] = { 0.0 },
           z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
 
     #define ZP(N,I) ((N) * z_at_pt[I])
@@ -227,18 +273,18 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
       SERIAL_EOL();
 
       probe_G33_points(z_at_pt, 3, true, false);
-      for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
+      LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
       print_G33_results(z_at_pt, true, true);
       delta_endstop_adj[axis] += 1.0;
       switch (axis) {
         case A_AXIS :
-          h_fac += 4.0 / (Z03(0) +Z01(1)                         +Z32(11) +Z32(3)); // Offset by X-tower end-stop
+          h_fac += 4.0 / (Z03(CEN) +Z01(__A)                               +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
           break;
         case B_AXIS :
-          h_fac += 4.0 / (Z03(0)         +Z01(5)         +Z32(7)          +Z32(3)); // Offset by Y-tower end-stop
+          h_fac += 4.0 / (Z03(CEN)           +Z01(__B)           +Z32(_BC)           +Z32(_AB)); // Offset by Y-tower end-stop
           break;
         case C_AXIS :
-          h_fac += 4.0 / (Z03(0)                 +Z01(9) +Z32(7) +Z32(11)        ); // Offset by Z-tower end-stop
+          h_fac += 4.0 / (Z03(CEN)                     +Z01(__C) +Z32(_BC) +Z32(_CA)          ); // Offset by Z-tower end-stop
           break;
       }
     }
@@ -257,11 +303,11 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
       SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
       SERIAL_EOL();
       probe_G33_points(z_at_pt, 3, true, false);
-      for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
+      LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
       print_G33_results(z_at_pt, true, true);
       delta_radius -= 1.0 * zig_zag;
       recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
-      r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius
+      r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
     }
     r_fac /= 2.0;
     r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
@@ -284,7 +330,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
       SERIAL_EOL();
 
       probe_G33_points(z_at_pt, 3, true, false);
-      for (int8_t i = 0; i <= 12; i++) z_at_pt[i] -= z_at_pt_base[i];
+      LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
       print_G33_results(z_at_pt, true, true);
 
       delta_tower_angle_trim[axis] -= 1.0;
@@ -296,13 +342,13 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
       recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
       switch (axis) {
         case A_AXIS :
-        a_fac += 4.0 / (       Z06(5) -Z06(9)         +Z06(11) -Z06(3)); // Offset by alpha tower angle
+        a_fac += 4.0 / (          Z06(__B) -Z06(__C)           +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
         break;
         case B_AXIS :
-        a_fac += 4.0 / (-Z06(1)       +Z06(9) -Z06(7)          +Z06(3)); // Offset by beta tower angle
+        a_fac += 4.0 / (-Z06(__A)          +Z06(__C) -Z06(_BC)           +Z06(_AB)); // Offset by beta tower angle
         break;
         case C_AXIS :
-        a_fac += 4.0 / (Z06(1) -Z06(5)        +Z06(7) -Z06(11)        ); // Offset by gamma tower angle
+        a_fac += 4.0 / (Z06(__A) -Z06(__B)           +Z06(_BC) -Z06(_CA)          ); // Offset by gamma tower angle
         break;
       }
     }
@@ -333,7 +379,7 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
  *      P1     Probe center and set height only.
  *      P2     Probe center and towers. Set height, endstops and delta radius.
  *      P3     Probe all positions: center, towers and opposite towers. Set all.
- *      P4-P7  Probe all positions at different locations and average them.
+ *      P4-P10 Probe all positions + at different itermediate locations and average them.
  *
  *   T   Don't calibrate tower angle corrections
  *
@@ -353,8 +399,8 @@ static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, cons
 void GcodeSuite::G33() {
 
   const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
-  if (!WITHIN(probe_points, 0, 7)) {
-    SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
+  if (!WITHIN(probe_points, 0, 10)) {
+    SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
     return;
   }
 
@@ -382,15 +428,13 @@ void GcodeSuite::G33() {
              _0p_calibration      = probe_points == 0,
              _1p_calibration      = probe_points == 1,
              _4p_calibration      = probe_points == 2,
+             _7p_9_centre         = probe_points >= 8,
              _tower_results       = (_4p_calibration && towers_set)
                                     || probe_points >= 3 || probe_points == 0,
              _opposite_results    = (_4p_calibration && !towers_set)
                                     || probe_points >= 3 || probe_points == 0,
              _endstop_results     = probe_points != 1,
-             _angle_results       = (probe_points >= 3 || probe_points == 0) && towers_set,
-             _7p_double_circle    = probe_points == 5,
-             _7p_triple_circle    = probe_points == 6,
-             _7p_quadruple_circle = probe_points == 7;
+             _angle_results       = (probe_points >= 3 || probe_points == 0) && towers_set;
   const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
   int8_t iterations = 0;
   float test_precision,
@@ -412,12 +456,9 @@ void GcodeSuite::G33() {
   SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
 
   if (!_1p_calibration && !_0p_calibration) {  // test if the outer radius is reachable
-    const float circles = (_7p_quadruple_circle ? 1.5 :
-                           _7p_triple_circle    ? 1.0 :
-                           _7p_double_circle    ? 0.5 : 0),
-                r = (1 + circles * 0.1) * delta_calibration_radius;
-    for (uint8_t axis = 1; axis <= 12; ++axis) {
-      const float a = RADIANS(180 + 30 * axis);
+    LOOP_CAL_RAD(axis) {
+      const float a = RADIANS(210 + (360 / NPP) *  (axis - 1)),
+                  r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
       if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
         SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
         return;
@@ -468,7 +509,7 @@ void GcodeSuite::G33() {
 
   do {
 
-    float z_at_pt[13] = { 0.0 };
+    float z_at_pt[NPP + 1] = { 0.0 };
 
     test_precision = zero_std_dev;
 
@@ -526,34 +567,34 @@ void GcodeSuite::G33() {
 
         case 1:
           test_precision = 0.00; // forced end
-          LOOP_XYZ(axis) e_delta[axis] = Z1(0);
+          LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
           break;
 
         case 2:
           if (towers_set) {
-            e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
-            e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
-            e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
-            r_delta         = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
+            e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
+            e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
+            e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
+            r_delta         = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
           }
           else {
-            e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
-            e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
-            e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
-            r_delta         = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
+            e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
+            e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
+            e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
+            r_delta         = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
           }
           break;
 
         default:
-          e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
-          e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
-          e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
-          r_delta         = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
+          e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
+          e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
+          e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
+          r_delta         = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
 
           if (towers_set) {
-            t_delta[A_AXIS] = (       - Z4(5) + Z4(9)         - Z4(11) + Z4(3)) * a_factor;
-            t_delta[B_AXIS] = ( Z4(1)         - Z4(9) + Z4(7)          - Z4(3)) * a_factor;
-            t_delta[C_AXIS] = (-Z4(1) + Z4(5)         - Z4(7) + Z4(11)        ) * a_factor;
+            t_delta[A_AXIS] = (         -Z4(__B) +Z4(__C)          -Z4(_CA) +Z4(_AB)) * a_factor;
+            t_delta[B_AXIS] = ( Z4(__A)          -Z4(__C) +Z4(_BC)          -Z4(_AB)) * a_factor;
+            t_delta[C_AXIS] = (-Z4(__A) +Z4(__B)          -Z4(_BC) +Z4(_CA)         ) * a_factor;
             e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
             e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
             e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;