diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp
index 162f5a1b394eb5523a6e15f242670a45a2948726..0a382c55353a10b4e65ab6161be884935bd3338a 100644
--- a/Marlin/G26_Mesh_Validation_Tool.cpp
+++ b/Marlin/G26_Mesh_Validation_Tool.cpp
@@ -258,8 +258,8 @@
         : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
 
       if (location.x_index >= 0 && location.y_index >= 0) {
-        const float circle_x = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
-                    circle_y = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
+        const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
+                    circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
 
         // Let's do a couple of quick sanity checks.  We can pull this code out later if we never see it catch a problem
         #ifdef DELTA
@@ -401,8 +401,8 @@
     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
       for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
         if (!is_bit_set(circle_flags, i, j)) {
-          const float mx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])),  // We found a circle that needs to be printed
-                      my = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
+          const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]),  // We found a circle that needs to be printed
+                      my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
 
           // Get the distance to this intersection
           float f = HYPOT(X - mx, Y - my);
@@ -446,11 +446,11 @@
               // We found two circles that need a horizontal line to connect them
               // Print it!
               //
-              sx = pgm_read_float(&(ubl.mesh_index_to_xpos[  i  ])) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
-              ex = pgm_read_float(&(ubl.mesh_index_to_xpos[i + 1])) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
+              sx = pgm_read_float(&ubl.mesh_index_to_xpos[  i  ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
+              ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
 
               sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
-              sy = ey = constrain(pgm_read_float(&(ubl.mesh_index_to_ypos[j])), Y_MIN_POS + 1, Y_MAX_POS - 1);
+              sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
               ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
 
               if (ubl.g26_debug_flag) {
@@ -477,10 +477,10 @@
                 // We found two circles that need a vertical line to connect them
                 // Print it!
                 //
-                sy = pgm_read_float(&(ubl.mesh_index_to_ypos[  j  ])) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
-                ey = pgm_read_float(&(ubl.mesh_index_to_ypos[j + 1])) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
+                sy = pgm_read_float(&ubl.mesh_index_to_ypos[  j  ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
+                ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
 
-                sx = ex = constrain(pgm_read_float(&(ubl.mesh_index_to_xpos[i])), X_MIN_POS + 1, X_MAX_POS - 1);
+                sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
                 sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
                 ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
 
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 6515d677d9b1ce7b7a4010ae51573b1d8f918061..c7a00f5952b7ae17e3d6dcf91f1b315ba885493f 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -4919,7 +4919,7 @@ void home_all_axes() { gcode_G28(); }
       // For LINEAR and 3POINT leveling correct the current position
 
       if (verbose_level > 0)
-        planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
+        planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
 
       if (!dryrun) {
         //
@@ -6965,7 +6965,7 @@ inline void gcode_M111() {
     for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
       if (TEST(marlin_debug_flags, i)) {
         if (comma++) SERIAL_CHAR(',');
-        serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
+        serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
       }
     }
   }
@@ -8360,7 +8360,7 @@ void quickstop_stepper() {
     // V to print the matrix or mesh
     if (code_seen('V')) {
       #if ABL_PLANAR
-        planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
+        planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
       #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
         if (bilinear_grid_spacing[X_AXIS]) {
           print_bilinear_leveling_grid();
@@ -9545,16 +9545,16 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
 
             #if ENABLED(DEBUG_LEVELING_FEATURE)
               if (DEBUGGING(LEVELING)) {
-                tmp_offset_vec.debug("tmp_offset_vec");
-                act_offset_vec.debug("act_offset_vec");
-                offset_vec.debug("offset_vec (BEFORE)");
+                tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
+                act_offset_vec.debug(PSTR("act_offset_vec"));
+                offset_vec.debug(PSTR("offset_vec (BEFORE)"));
               }
             #endif
 
             offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
 
             #if ENABLED(DEBUG_LEVELING_FEATURE)
-              if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
+              if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
             #endif
 
             // Adjustments to the current position
diff --git a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h
index cd49149ea63e43aca7a2a83bc62f932621ff31ab..1439a40cd788b01c88e4fcf1a63a528a9eaf663c 100644
--- a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h
+++ b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h
@@ -452,7 +452,7 @@
 
   // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
   #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
-  
+
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   #define DELTA_AUTO_CALIBRATION
   #if ENABLED(DELTA_AUTO_CALIBRATION)
diff --git a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h
index 623598ace486f4af94b8c7e7db8fea1f4a6ce6e1..9654740b11c547c6fa25642ed65d9f8f0b356b7d 100644
--- a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h
+++ b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h
@@ -459,7 +459,7 @@
 
   // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
   #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
-  
+
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION
   #if ENABLED(DELTA_AUTO_CALIBRATION)
diff --git a/Marlin/example_configurations/delta/generic/Configuration.h b/Marlin/example_configurations/delta/generic/Configuration.h
index 60589f03b46724945bb1ba09777d4fba63c2a07c..d93cd66996b71eef4c4b19401a74d77016e7f3fd 100644
--- a/Marlin/example_configurations/delta/generic/Configuration.h
+++ b/Marlin/example_configurations/delta/generic/Configuration.h
@@ -448,7 +448,7 @@
 
   // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
   #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
-  
+
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION
   #if ENABLED(DELTA_AUTO_CALIBRATION)
diff --git a/Marlin/example_configurations/delta/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/kossel_mini/Configuration.h
index 8d6c59d7e88b1e77259fc664a8ce39333a6182ba..1e3d3ed4322642cb37ccd1cc9d783d4dcf993c48 100644
--- a/Marlin/example_configurations/delta/kossel_mini/Configuration.h
+++ b/Marlin/example_configurations/delta/kossel_mini/Configuration.h
@@ -448,7 +448,7 @@
 
   // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
   #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm
-  
+
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION
   #if ENABLED(DELTA_AUTO_CALIBRATION)
diff --git a/Marlin/example_configurations/delta/kossel_pro/Configuration.h b/Marlin/example_configurations/delta/kossel_pro/Configuration.h
index 186b616e9c8f943368a8642e446893245910c64e..91897cdfb6a54a1d719f50fad2f5de688744b669 100644
--- a/Marlin/example_configurations/delta/kossel_pro/Configuration.h
+++ b/Marlin/example_configurations/delta/kossel_pro/Configuration.h
@@ -435,7 +435,7 @@
 
   // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
   #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm
-  
+
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION
   #if ENABLED(DELTA_AUTO_CALIBRATION)
diff --git a/Marlin/example_configurations/delta/kossel_xl/Configuration.h b/Marlin/example_configurations/delta/kossel_xl/Configuration.h
index 3e4db593f627dc8b5eba7deeb6814ecc31987ffb..f3e5494704638cb1b1a965ea6eede85a75ba3837 100644
--- a/Marlin/example_configurations/delta/kossel_xl/Configuration.h
+++ b/Marlin/example_configurations/delta/kossel_xl/Configuration.h
@@ -453,7 +453,7 @@
 
   // set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
   #define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
-  
+
   // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
   //#define DELTA_AUTO_CALIBRATION
   #if ENABLED(DELTA_AUTO_CALIBRATION)
diff --git a/Marlin/least_squares_fit.cpp b/Marlin/least_squares_fit.cpp
index ce21b3a05320efa93b3e315093cdfcc51ce35ef9..a6fb3c4457c420fde20ccf0e86e004d16051a215 100644
--- a/Marlin/least_squares_fit.cpp
+++ b/Marlin/least_squares_fit.cpp
@@ -66,12 +66,12 @@ int finish_incremental_LSF(struct linear_fit_data *lsf) {
   lsf->xbar /= N;
   lsf->ybar /= N;
   lsf->zbar /= N;
-  lsf->x2bar = lsf->x2bar / N - lsf->xbar * lsf->xbar;
-  lsf->y2bar = lsf->y2bar / N - lsf->ybar * lsf->ybar;
-  lsf->z2bar = lsf->z2bar / N - lsf->zbar * lsf->zbar;
-  lsf->xybar = lsf->xybar / N - lsf->xbar * lsf->ybar;
-  lsf->yzbar = lsf->yzbar / N - lsf->ybar * lsf->zbar;
-  lsf->xzbar = lsf->xzbar / N - lsf->xbar * lsf->zbar;
+  lsf->x2bar = lsf->x2bar / N - sq(lsf->xbar);
+  lsf->y2bar = lsf->y2bar / N - sq(lsf->ybar);
+  lsf->z2bar = lsf->z2bar / N - sq(lsf->zbar);
+  lsf->xybar = lsf->xybar / N - sq(lsf->xbar);
+  lsf->yzbar = lsf->yzbar / N - sq(lsf->ybar);
+  lsf->xzbar = lsf->xzbar / N - sq(lsf->xbar);
 
   const float DD = lsf->x2bar * lsf->y2bar - sq(lsf->xybar);
   if (fabs(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
diff --git a/Marlin/ubl_G29.cpp b/Marlin/ubl_G29.cpp
index b2c4a7ef41421b02b051bf9cd2cd4dc23b30ec9a..e9f97b4adc40a6806f0ace78a5120852dee78091 100644
--- a/Marlin/ubl_G29.cpp
+++ b/Marlin/ubl_G29.cpp
@@ -31,10 +31,14 @@
   #include "hex_print_routines.h"
   #include "configuration_store.h"
   #include "ultralcd.h"
+  #include "stepper.h"
 
   #include <math.h>
   #include "least_squares_fit.h"
 
+  extern float destination[XYZE];
+  extern float current_position[XYZE];
+
   void lcd_return_to_status();
   bool lcd_clicked();
   void lcd_implementation_clear();
@@ -317,6 +321,7 @@
 
   void __attribute__((optimize("O0"))) gcode_G29() {
 
+
     if (ubl.eeprom_start < 0) {
       SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
       SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
@@ -347,7 +352,6 @@
     }
 
     if (code_seen('Q')) {
-
       const int test_pattern = code_has_value() ? code_value_int() : -1;
       if (!WITHIN(test_pattern, 0, 2)) {
         SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
@@ -428,15 +432,16 @@
           //
           SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
           do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
-          if (!x_flag && !y_flag) {      // use a good default location for the path
-            // The flipped > and < operators on these two comparisons is
-            // intentional. It should cause the probed points to follow a
-            // nice path on Cartesian printers. It may make sense to
-            // have Delta printers default to the center of the bed.
-            // For now, until that is decided, it can be forced with the X
-            // and Y parameters.
-            x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
-            y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
+          if (!x_flag && !y_flag) {
+            /**
+             * Use a good default location for the path.
+             * The flipped > and < operators in these comparisons is intentional.
+             * It should cause the probed points to follow a nice path on Cartesian printers.
+             * It may make sense to have Delta printers default to the center of the bed.
+             * Until that is decided, this can be forced with the X and Y parameters.
+             */
+            x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? UBL_MESH_MAX_X : UBL_MESH_MIN_X;
+            y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? UBL_MESH_MAX_Y : UBL_MESH_MIN_Y;
           }
 
           if (code_seen('C')) {
@@ -455,27 +460,29 @@
             }
           }
           manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
+          SERIAL_PROTOCOLLNPGM("G29 P2 finished");
 
         } break;
 
         case 3: {
-          //
-          // Populate invalid Mesh areas.  Two choices are available to the user.  The user can
-          // specify the constant to be used with a C # paramter.   Or the user can allow the G29 P3 command to
-          // apply a 'reasonable' constant to the invalid mesh point.  Some caution and scrutiny should be used
-          // on either of these paths!
-          //
+          /**
+           * Populate invalid mesh areas. Proceed with caution.
+           * Two choices are available:
+           *   - Specify a constant with the 'C' parameter.
+           *   - Allow 'G29 P3' to choose a 'reasonable' constant.
+           */
           if (c_flag) {
-          while (repetition_cnt--) {
+            while (repetition_cnt--) {
               const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
-            if (location.x_index < 0) break; // No more invalid Mesh Points to populate
-              ubl.z_values[location.x_index][location.y_index] = ubl_constant;
+              if (location.x_index < 0) break; // No more invalid Mesh Points to populate
+                ubl.z_values[location.x_index][location.y_index] = ubl_constant;
             }
             break;
-          } else                    // The user wants to do a 'Smart' fill where we use the surrounding known
-              smart_fill_mesh();    // values to provide a good guess of what the unprobed mesh point should be
-          break;
           }
+          else
+            smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
+
+        } break;
 
         case 4:
           //
@@ -483,55 +490,19 @@
           //
           fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
           break;
-        case 5:
-          ubl.find_mean_mesh_height();
-          break;
-        case 6:
-          ubl.shift_mesh_height();
-          break;
 
-        case 10:
-          // [DEBUG] Pay no attention to this stuff. It can be removed soon.
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
-          KEEPALIVE_STATE(PAUSED_FOR_USER);
-          ubl.has_control_of_lcd_panel = true;
-          while (!ubl_lcd_clicked()) {
-            safe_delay(250);
-            if (ubl.encoder_diff) {
-              SERIAL_ECHOLN((int)ubl.encoder_diff);
-              ubl.encoder_diff = 0;
-            }
-          }
-          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
-          ubl.has_control_of_lcd_panel = false;
-          KEEPALIVE_STATE(IN_HANDLER);
-          break;
+        case 5: ubl.find_mean_mesh_height(); break;
 
-        case 11:
-          // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
-          KEEPALIVE_STATE(PAUSED_FOR_USER);
-          wait_for_user = true;
-          while (wait_for_user) {
-            safe_delay(250);
-            if (ubl.encoder_diff) {
-              SERIAL_ECHOLN((int)ubl.encoder_diff);
-              ubl.encoder_diff = 0;
-            }
-          }
-          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
-          KEEPALIVE_STATE(IN_HANDLER);
-          break;
+        case 6: ubl.shift_mesh_height(); break;
       }
+
     }
 
     if (code_seen('T')) {
 
-      float z1 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
-            z2 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
-            z3 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
+      float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
+            z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
+            z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
 
       //  We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
       //  the Mesh is tilted!  (We need to compensate each probe point by what the Mesh says that location's height is)
@@ -541,7 +512,7 @@
       z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
       z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
 
-      do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
+      do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
       ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
       ubl.restore_ubl_active_state_and_leave();
     }
@@ -600,8 +571,8 @@
               SERIAL_ECHOPAIR(" J ", y);
               SERIAL_ECHOPGM(" Z ");
               SERIAL_ECHO_F(ubl.z_values[x][y], 6);
-              SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[x]))));
-              SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[y]))));
+              SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
+              SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
               SERIAL_EOL;
             }
         return;
@@ -647,9 +618,9 @@
         } while (!ubl_lcd_clicked());
 
         ubl.has_control_of_lcd_panel = true;   // There is a race condition for the Encoder Wheel getting clicked.
-                                          // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
-                                          // or here. So, until we are done looking for a long Encoder Wheel Press,
-                                          // we need to take control of the panel
+                                               // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
+                                               // or here. So, until we are done looking for a long Encoder Wheel Press,
+                                               // we need to take control of the panel
 
         KEEPALIVE_STATE(IN_HANDLER);
 
@@ -686,44 +657,39 @@
   }
 
   void unified_bed_leveling::find_mean_mesh_height() {
-    uint8_t x, y;
-    int n;
-    float sum, sum_of_diff_squared, sigma, difference, mean;
-
-    sum = sum_of_diff_squared = 0.0;
-    n = 0;
-    for (x = 0; x < GRID_MAX_POINTS_X; x++)
-      for (y = 0; y < GRID_MAX_POINTS_Y; y++)
+    float sum = 0.0;
+    int n = 0;
+    for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
+      for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
         if (!isnan(ubl.z_values[x][y])) {
           sum += ubl.z_values[x][y];
           n++;
         }
 
-    mean = sum / n;
+    const float mean = sum / n;
 
     //
     // Now do the sumation of the squares of difference from mean
     //
-    for (x = 0; x < GRID_MAX_POINTS_X; x++)
-      for (y = 0; y < GRID_MAX_POINTS_Y; y++)
-        if (!isnan(ubl.z_values[x][y])) {
-          difference = (ubl.z_values[x][y] - mean);
-          sum_of_diff_squared += difference * difference;
-        }
+    float sum_of_diff_squared = 0.0;
+    for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
+      for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
+        if (!isnan(ubl.z_values[x][y]))
+          sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
 
     SERIAL_ECHOLNPAIR("# of samples: ", n);
     SERIAL_ECHOPGM("Mean Mesh Height: ");
     SERIAL_ECHO_F(mean, 6);
     SERIAL_EOL;
 
-    sigma = sqrt(sum_of_diff_squared / (n + 1));
+    const float sigma = sqrt(sum_of_diff_squared / (n + 1));
     SERIAL_ECHOPGM("Standard Deviation: ");
     SERIAL_ECHO_F(sigma, 6);
     SERIAL_EOL;
 
     if (c_flag)
-      for (x = 0; x < GRID_MAX_POINTS_X; x++)
-        for (y = 0; y < GRID_MAX_POINTS_Y; y++)
+      for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
+        for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
           if (!isnan(ubl.z_values[x][y]))
             ubl.z_values[x][y] -= mean + ubl_constant;
   }
@@ -761,8 +727,8 @@
       location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
       if (location.x_index >= 0 && location.y_index >= 0) {
 
-        const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
-                    rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
+        const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
+                    rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
 
         // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
         if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
@@ -785,13 +751,12 @@
     ubl.restore_ubl_active_state_and_leave();
 
     do_blocking_move_to_xy(
-      constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
-      constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
+      constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
+      constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
     );
   }
 
   void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
-    float d, t, inv_z;
     int i, j;
 
     matrix_3x3 rotation;
@@ -812,94 +777,96 @@
      * However, we don't know its direction. We need it to point up. So if
      * Z is negative, we need to invert the sign of all components of the vector
      */
-    if ( normal.z < 0.0 ) {
+    if (normal.z < 0.0) {
       normal.x = -normal.x;
       normal.y = -normal.y;
       normal.z = -normal.z;
     }
 
-    rotation = matrix_3x3::create_look_at( vector_3( normal.x,  normal.y, 1));
+    rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
 
-    if (g29_verbose_level>2) {
+    if (g29_verbose_level > 2) {
       SERIAL_ECHOPGM("bed plane normal = [");
-      SERIAL_PROTOCOL_F( normal.x, 7);
-      SERIAL_ECHOPGM(",");
-      SERIAL_PROTOCOL_F( normal.y, 7);
-      SERIAL_ECHOPGM(",");
-      SERIAL_PROTOCOL_F( normal.z, 7);
-      SERIAL_ECHOPGM("]\n");
-      rotation.debug("rotation matrix:");
+      SERIAL_PROTOCOL_F(normal.x, 7);
+      SERIAL_PROTOCOLCHAR(',');
+      SERIAL_PROTOCOL_F(normal.y, 7);
+      SERIAL_PROTOCOLCHAR(',');
+      SERIAL_PROTOCOL_F(normal.z, 7);
+      SERIAL_ECHOLNPGM("]");
+      rotation.debug(PSTR("rotation matrix:"));
     }
 
     //
     // All of 3 of these points should give us the same d constant
     //
 
-    t = normal.x * UBL_PROBE_PT_1_X + normal.y * UBL_PROBE_PT_1_Y;
-    d = t + normal.z * z1;
+    float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
+          d = t + normal.z * z1;
 
     if (g29_verbose_level>2) {
       SERIAL_ECHOPGM("D constant: ");
-      SERIAL_PROTOCOL_F( d, 7);
-      SERIAL_ECHOPGM(" \n");
+      SERIAL_PROTOCOL_F(d, 7);
+      SERIAL_ECHOLNPGM(" ");
     }
 
     #if ENABLED(DEBUG_LEVELING_FEATURE)
       if (DEBUGGING(LEVELING)) {
-    SERIAL_ECHOPGM("d from 1st point: ");
-    SERIAL_ECHO_F(d, 6);
-    SERIAL_EOL;
-        t = normal.x * UBL_PROBE_PT_2_X + normal.y * UBL_PROBE_PT_2_Y;
-    d = t + normal.z * z2;
-    SERIAL_ECHOPGM("d from 2nd point: ");
-    SERIAL_ECHO_F(d, 6);
-    SERIAL_EOL;
-        t = normal.x * UBL_PROBE_PT_3_X + normal.y * UBL_PROBE_PT_3_Y;
-    d = t + normal.z * z3;
-    SERIAL_ECHOPGM("d from 3rd point: ");
-    SERIAL_ECHO_F(d, 6);
-    SERIAL_EOL;
+        SERIAL_ECHOPGM("d from 1st point: ");
+        SERIAL_ECHO_F(d, 6);
+        SERIAL_EOL;
+        t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
+        d = t + normal.z * z2;
+        SERIAL_ECHOPGM("d from 2nd point: ");
+        SERIAL_ECHO_F(d, 6);
+        SERIAL_EOL;
+        t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
+        d = t + normal.z * z3;
+        SERIAL_ECHOPGM("d from 3rd point: ");
+        SERIAL_ECHO_F(d, 6);
+        SERIAL_EOL;
       }
     #endif
 
-    for (i = 0; i < GRID_MAX_POINTS_X; i++) {
-      for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
-        float x_tmp, y_tmp, z_tmp;
-          x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]);
-          y_tmp = pgm_read_float(ubl.mesh_index_to_ypos[j]);
-          z_tmp = ubl.z_values[i][j];
-          #if ENABLED(DEBUG_LEVELING_FEATURE)
-            if (DEBUGGING(LEVELING)) {
-              SERIAL_ECHOPGM("before rotation = [");
-              SERIAL_PROTOCOL_F( x_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( y_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( z_tmp, 7);
-              SERIAL_ECHOPGM("]   ---> ");
-              safe_delay(20);
+    for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
+      for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
+        float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
+              y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
+              z_tmp = ubl.z_values[i][j];
+        #if ENABLED(DEBUG_LEVELING_FEATURE)
+          if (DEBUGGING(LEVELING)) {
+            SERIAL_ECHOPGM("before rotation = [");
+            SERIAL_PROTOCOL_F(x_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(y_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(z_tmp, 7);
+            SERIAL_ECHOPGM("]   ---> ");
+            safe_delay(20);
+          }
+        #endif
+        apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
+        #if ENABLED(DEBUG_LEVELING_FEATURE)
+          if (DEBUGGING(LEVELING)) {
+            SERIAL_ECHOPGM("after rotation = [");
+            SERIAL_PROTOCOL_F(x_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(y_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(z_tmp, 7);
+            SERIAL_ECHOLNPGM("]");
+            safe_delay(55);
+          }
+        #endif
+        ubl.z_values[i][j] += z_tmp - d;
       }
-          #endif
-          apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
-          #if ENABLED(DEBUG_LEVELING_FEATURE)
-            if (DEBUGGING(LEVELING)) {
-              SERIAL_ECHOPGM("after rotation = [");
-              SERIAL_PROTOCOL_F( x_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( y_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( z_tmp, 7);
-              SERIAL_ECHOPGM("]\n");
-              safe_delay(55);
-    }
-          #endif
-          ubl.z_values[i][j] += z_tmp - d;
-  }
     }
-    return;
   }
 
   float use_encoder_wheel_to_measure_point() {
+
+    while (ubl_lcd_clicked()) delay(50);  // wait for user to release encoder wheel
+    delay(50);  // debounce
+
     KEEPALIVE_STATE(PAUSED_FOR_USER);
     while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
       idle();
@@ -912,21 +879,29 @@
     return current_position[Z_AXIS];
   }
 
-  float measure_business_card_thickness(const float &in_height) {
+  static void say_and_take_a_measurement() {
+    SERIAL_PROTOCOLLNPGM(" and take a measurement.");
+  }
 
+  float measure_business_card_thickness(const float &in_height) {
     ubl.has_control_of_lcd_panel = true;
-    ubl.save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
+    ubl.save_ubl_active_state_and_disable();   // Disable bed level correction for probing
 
-    SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
     do_blocking_move_to_z(in_height);
-    do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
-      //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
+    do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
+      //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
+
+    stepper.synchronize();
+    SERIAL_PROTOCOLPGM("Place shim under nozzle");
+    say_and_take_a_measurement();
 
     const float z1 = use_encoder_wheel_to_measure_point();
     do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
-    ubl.has_control_of_lcd_panel = false;
+    stepper.synchronize();
+
+    SERIAL_PROTOCOLPGM("Remove shim");
+    say_and_take_a_measurement();
 
-    SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
     const float z2 = use_encoder_wheel_to_measure_point();
     do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
 
@@ -935,6 +910,8 @@
       SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
       SERIAL_PROTOCOLLNPGM("mm thick.");
     }
+    ubl.has_control_of_lcd_panel = false;
+
     ubl.restore_ubl_active_state_and_leave();
     return abs(z1 - z2);
   }
@@ -953,11 +930,11 @@
       // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
       if (location.x_index < 0 && location.y_index < 0) continue;
 
-      const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
-                  rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
+      const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
+                  rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
 
       // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
-      if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
+      if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) {
         SERIAL_ERROR_START;
         SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
         ubl.has_control_of_lcd_panel = false;
@@ -984,7 +961,9 @@
 
       if (do_ubl_mesh_map) ubl.display_map(map_type);  // show user where we're probing
 
-      while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
+      while (ubl_lcd_clicked()) delay(50);             // wait for user to release encoder wheel
+      delay(50);                                       // debounce
+      while (!ubl_lcd_clicked()) {                     // we need the loop to move the nozzle based on the encoder wheel here!
         idle();
         if (ubl.encoder_diff) {
           do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
@@ -1024,17 +1003,28 @@
     do_blocking_move_to_xy(lx, ly);
   }
 
+  static void say_ubl_name() {
+    SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
+  }
+
+  static void report_ubl_state() {
+    say_ubl_name();
+    SERIAL_PROTOCOLPGM("System ");
+    if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
+    SERIAL_PROTOCOLLNPGM("activated.\n");
+  }
+ 
   bool g29_parameter_parsing() {
     bool err_flag = false;
 
-      LCD_MESSAGEPGM("Doing G29 UBL!");
+    LCD_MESSAGEPGM("Doing G29 UBL!");
+    lcd_quick_feedback();
+
     ubl_constant = 0.0;
     repetition_cnt = 0;
-      lcd_quick_feedback();
 
     x_flag = code_seen('X') && code_has_value();
     x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
-
     y_flag = code_seen('Y') && code_has_value();
     y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
 
@@ -1042,14 +1032,14 @@
     if (repeat_flag) {
       repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
       if (repetition_cnt < 1) {
-        SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
+        SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
         return UBL_ERR;
       }
     }
 
     g29_verbose_level = code_seen('V') ? code_value_int() : 0;
     if (!WITHIN(g29_verbose_level, 0, 4)) {
-      SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
+      SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4)\n");
       err_flag = true;
     }
 
@@ -1066,44 +1056,47 @@
       err_flag = true;
     }
 
-    if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
+    if (!WITHIN(RAW_X_POSITION(x_pos), UBL_MESH_MIN_X, UBL_MESH_MAX_X)) {
       SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
       err_flag = true;
     }
 
-    if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
+    if (!WITHIN(RAW_Y_POSITION(y_pos), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) {
       SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
       err_flag = true;
     }
 
     if (err_flag) return UBL_ERR;
 
-    if (code_seen('A')) {     // Activate the Unified Bed Leveling System
+    // Activate or deactivate UBL
+    if (code_seen('A')) {
+      if (code_seen('D')) {
+        SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
+        return UBL_ERR;
+      }
       ubl.state.active = 1;
-      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
+      report_ubl_state();
     }
-
-    c_flag = code_seen('C');
-    if (c_flag)
-      ubl_constant = code_value_float();
-
-    if (code_seen('D')) {     // Disable the Unified Bed Leveling System
+    else if (code_seen('D')) {
       ubl.state.active = 0;
-      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
+      report_ubl_state();
     }
 
+    // Set global 'C' flag and its value
+    if ((c_flag = code_seen('C')))
+      ubl_constant = code_value_float();
+
     #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
       if (code_seen('F') && code_has_value()) {
         const float fh = code_value_float();
         if (!WITHIN(fh, 0.0, 100.0)) {
-          SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
+          SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
           return UBL_ERR;
         }
         set_z_fade_height(fh);
       }
     #endif
 
-
     map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
     if (!WITHIN(map_type, 0, 1)) {
       SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
@@ -1125,7 +1118,7 @@
    * This function goes away after G29 debug is complete. But for right now, it is a handy
    * routine to dump binary data structures.
    */
-/*
+  /*
   void dump(char * const str, const float &f) {
     char *ptr;
 
@@ -1143,7 +1136,7 @@
 
     SERIAL_EOL;
   }
-*/
+  //*/
 
   static int ubl_state_at_invocation = 0,
              ubl_state_recursion_chk = 0;
@@ -1170,7 +1163,6 @@
     ubl.state.active = ubl_state_at_invocation;
   }
 
-
   /**
    * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
    * good to have the extra information. Soon... we prune this to just a few items
@@ -1178,7 +1170,8 @@
   void g29_what_command() {
     const uint16_t k = E2END - ubl.eeprom_start;
 
-    SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
+    say_ubl_name();
+    SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
     if (ubl.state.active)
       SERIAL_PROTOCOLCHAR('A');
     else
@@ -1209,11 +1202,11 @@
     SERIAL_EOL;
     safe_delay(25);
 
-    SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=0x", hex_word(ubl.eeprom_start));
+    SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start));
 
     SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
-      SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[i]))), 1);
+      SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 1);
       SERIAL_PROTOCOLPGM("  ");
       safe_delay(50);
     }
@@ -1221,7 +1214,7 @@
 
     SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
     for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
-      SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[i]))), 1);
+      SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 1);
       SERIAL_PROTOCOLPGM("  ");
       safe_delay(50);
     }
@@ -1275,8 +1268,10 @@
     SERIAL_EOL;
     safe_delay(50);
 
-    if (!ubl.sanity_check())
-      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
+    if (!ubl.sanity_check()) {
+      say_ubl_name();
+      SERIAL_PROTOCOLLNPGM("sanity checks passed.");
+    }
   }
 
   /**
@@ -1336,18 +1331,18 @@
         ubl.z_values[x][y] -= tmp_z_values[x][y];
   }
 
-  mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
-    float distance, closest = far_flag ? -99999.99 : 99999.99;
-    mesh_index_pair return_val;
-
-    return_val.x_index = return_val.y_index = -1;
+  mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
+    mesh_index_pair out_mesh;
+    out_mesh.x_index = out_mesh.y_index = -1;
 
     const float current_x = current_position[X_AXIS],
                 current_y = current_position[Y_AXIS];
 
     // Get our reference position. Either the nozzle or probe location.
-    const float px = lx - (probe_as_reference==USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
-                py = ly - (probe_as_reference==USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
+    const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
+                py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
+
+    float closest = far_flag ? -99999.99 : 99999.99;
 
     for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
       for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
@@ -1359,13 +1354,13 @@
 
           // We only get here if we found a Mesh Point of the specified type
 
-          const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // Check if we can probe this mesh location
-                      rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
+          const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
+                      rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
 
           // If using the probe as the reference there are some unreachable locations.
           // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
 
-          if (probe_as_reference==USE_PROBE_AS_REFERENCE &&
+          if (probe_as_reference == USE_PROBE_AS_REFERENCE &&
             (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
           ) continue;
 
@@ -1375,30 +1370,38 @@
           const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
                       my = LOGICAL_Y_POSITION(rawy);
 
-          distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
-
-          if (far_flag) {                                           // If doing the far_flag action, we want to be as far as possible
-            for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {   // from the starting point and from any other probed points.  We
-              for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { // want the next point spread out and filling in any blank spaces
-                if (!isnan(ubl.z_values[k][l])) {                       // in the mesh. So we add in some of the distance to every probed
-                  distance += sq(i - k) * (MESH_X_DIST) * .05       // point we can find.
+          float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
+
+          /**
+           * If doing the far_flag action, we want to be as far as possible
+           * from the starting point and from any other probed points. We
+           * want the next point spread out and filling in any blank spaces
+           * in the mesh. So we add in some of the distance to every probed
+           * point we can find.
+           */
+          if (far_flag) {
+            for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
+              for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
+                if (!isnan(ubl.z_values[k][l])) {
+                  distance += sq(i - k) * (MESH_X_DIST) * .05
                             + sq(j - l) * (MESH_Y_DIST) * .05;
                 }
               }
             }
           }
 
-          if (far_flag == (distance > closest) && distance != closest) {  // if far_flag, look for farthest point
+          // if far_flag, look for farthest point
+          if (far_flag == (distance > closest) && distance != closest) {
             closest = distance;       // We found a closer/farther location with
-            return_val.x_index = i;   // the specified type of mesh value.
-            return_val.y_index = j;
-            return_val.distance = closest;
+            out_mesh.x_index = i;     // the specified type of mesh value.
+            out_mesh.y_index = j;
+            out_mesh.distance = closest;
           }
         }
       } // for j
     } // for i
 
-    return return_val;
+    return out_mesh;
   }
 
   void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
@@ -1418,50 +1421,55 @@
     do_blocking_move_to_xy(lx, ly);
     do {
       location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
-                                                                                              // It doesn't matter if the probe can not reach this
-                                                                                              // location. This is a manual edit of the Mesh Point.
+                                                                  // It doesn't matter if the probe can't reach this
+                                                                  // location. This is a manual edit of the Mesh Point.
       if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
 
       bit_clear(not_done, location.x_index, location.y_index);  // Mark this location as 'adjusted' so we will find a
                                                                 // different location the next time through the loop
 
-      const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
-                  rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
+      const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
+                  rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
 
       // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
-      if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
+      if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) { // In theory, we don't need this check.
         SERIAL_ERROR_START;
         SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
         ubl.has_control_of_lcd_panel = false;
         goto FINE_TUNE_EXIT;
       }
 
-      do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);    // Move the nozzle to where we are going to edit
-      do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
-
       float new_z = ubl.z_values[location.x_index][location.y_index];
 
-      round_off = (int32_t)(new_z * 1000.0);    // we chop off the last digits just to be clean. We are rounding to the
-      new_z = float(round_off) / 1000.0;
+      if (!isnan(new_z)) {  //can't fine tune a point that hasn't been probed
 
-      KEEPALIVE_STATE(PAUSED_FOR_USER);
-      ubl.has_control_of_lcd_panel = true;
+        do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);    // Move the nozzle to where we are going to edit
+        do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
 
-      if (do_ubl_mesh_map) ubl.display_map(map_type);  // show the user which point is being adjusted
+        round_off = (int32_t)(new_z * 1000.0);    // we chop off the last digits just to be clean. We are rounding to the
+        new_z = float(round_off) / 1000.0;
 
-      lcd_implementation_clear();
-      lcd_mesh_edit_setup(new_z);
+        KEEPALIVE_STATE(PAUSED_FOR_USER);
+        ubl.has_control_of_lcd_panel = true;
 
-      do {
-        new_z = lcd_mesh_edit();
-        idle();
-      } while (!ubl_lcd_clicked());
+        if (do_ubl_mesh_map) ubl.display_map(map_type);  // show the user which point is being adjusted
+
+        lcd_implementation_clear();
+
+        lcd_mesh_edit_setup(new_z);
+
+        do {
+          new_z = lcd_mesh_edit();
+          idle();
+        } while (!ubl_lcd_clicked());
 
-      lcd_return_to_status();
+        lcd_return_to_status();
 
-      ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
-                                           // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
-                                           // or here.
+        // There is a race condition for the Encoder Wheel getting clicked.
+        // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
+        // or here.
+        ubl.has_control_of_lcd_panel = true;
+      }
 
       const millis_t nxt = millis() + 1500UL;
       while (ubl_lcd_clicked()) { // debounce and watch for abort
@@ -1501,229 +1509,193 @@
     SERIAL_ECHOLNPGM("Done Editing Mesh");
   }
 
-  //
-  // The routine provides the 'Smart Fill' capability.  It scans from the
-  // outward edges of the mesh towards the center.  If it finds an invalid
-  // location, it uses the next two points (assumming they are valid) to
-  // calculate a 'reasonable' value for the unprobed mesh point.
-  //
-  void smart_fill_mesh() {
-    float f, diff;
-    for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {             // Bottom of the mesh looking up
-      for (uint8_t y = 0; y < GRID_MAX_POINTS_Y-2; y++) {
-        if (isnan(ubl.z_values[x][y])) {
-          if (isnan(ubl.z_values[x][y+1]))                        // we only deal with the first NAN next to a block of
-            continue;                                             // good numbers.  we want 2 good numbers to extrapolate off of.
-          if (isnan(ubl.z_values[x][y+2]))
-            continue;
-          if (ubl.z_values[x][y+1] < ubl.z_values[x][y+2])        // The bed is angled down near this edge. So to be safe, we
-            ubl.z_values[x][y] = ubl.z_values[x][y+1];            // use the closest value, which is probably a little too high
-          else {
-            diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2];   // The bed is angled up near this edge. So we will use the closest
-            ubl.z_values[x][y] = ubl.z_values[x][y+1] + diff;     // height and add in the difference between that and the next point
-          }
-          break;
-        }
-      }
-    }
-    for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {             // Top of the mesh looking down
-      for (uint8_t y=GRID_MAX_POINTS_Y-1; y>=1; y--) {
-        if (isnan(ubl.z_values[x][y])) {
-          if (isnan(ubl.z_values[x][y-1]))                        // we only deal with the first NAN next to a block of
-            continue;                                             // good numbers.  we want 2 good numbers to extrapolate off of.
-          if (isnan(ubl.z_values[x][y-2]))
-            continue;
-          if (ubl.z_values[x][y-1] < ubl.z_values[x][y-2])        // The bed is angled down near this edge. So to be safe, we
-            ubl.z_values[x][y] = ubl.z_values[x][y-1];            // use the closest value, which is probably a little too high
-          else {
-            diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2];   // The bed is angled up near this edge. So we will use the closest
-            ubl.z_values[x][y] = ubl.z_values[x][y-1] + diff;     // height and add in the difference between that and the next point
-          }
-          break;
-        }
+  /**
+   * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
+   * If an invalid location is found, use the next two points (if valid) to
+   * calculate a 'reasonable' value for the unprobed mesh point.
+   */
+
+  bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
+    const int8_t x1 = x + xdir, x2 = x1 + xdir,
+                 y1 = y + ydir, y2 = y1 + ydir;
+    // A NAN next to a pair of real values?
+    if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
+      if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2])                  // Angled downward?
+        ubl.z_values[x][y] = ubl.z_values[x1][y1];                      // Use nearest (maybe a little too high.)
+      else {
+        const float diff = ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward
+        ubl.z_values[x][y] = ubl.z_values[x1][y1] + diff;               // Use closest plus difference
       }
+      return true;
     }
-    for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
-      for (uint8_t x = 0; x < GRID_MAX_POINTS_X-2; x++) {         // Left side of the mesh looking right
-        if (isnan(ubl.z_values[x][y])) {
-          if (isnan(ubl.z_values[x+1][y]))                        // we only deal with the first NAN next to a block of
-            continue;                                             // good numbers.  we want 2 good numbers to extrapolate off of.
-          if (isnan(ubl.z_values[x+2][y]))
-            continue;
-          if (ubl.z_values[x+1][y] < ubl.z_values[x+2][y])        // The bed is angled down near this edge. So to be safe, we
-            ubl.z_values[x][y] = ubl.z_values[x][y+1];            // use the closest value, which is probably a little too high
-          else {
-            diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y];   // The bed is angled up near this edge. So we will use the closest
-            ubl.z_values[x][y] = ubl.z_values[x+1][y] + diff;     // height and add in the difference between that and the next point
-          }
-          break;
-        }
-      }
+    return false;
+  }
+
+  typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
+
+  void smart_fill_loop(const smart_fill_info &f) {
+    if (f.yfirst) {
+      const int8_t dir = f.ex > f.sx ? 1 : -1;
+      for (uint8_t y = f.sy; y != f.ey; ++y)
+        for (uint8_t x = f.sx; x != f.ex; x += dir)
+          if (smart_fill_one(x, y, dir, 0)) break;
     }
-    for (uint8_t y=0; y < GRID_MAX_POINTS_Y; y++) {
-      for (uint8_t x=GRID_MAX_POINTS_X-1; x>=1; x--) {            // Right side of the mesh looking left
-        if (isnan(ubl.z_values[x][y])) {
-          if (isnan(ubl.z_values[x-1][y]))                        // we only deal with the first NAN next to a block of
-            continue;                                             // good numbers.  we want 2 good numbers to extrapolate off of.
-          if (isnan(ubl.z_values[x-2][y]))
-            continue;
-          if (ubl.z_values[x-1][y] < ubl.z_values[x-2][y])        // The bed is angled down near this edge. So to be safe, we
-            ubl.z_values[x][y] = ubl.z_values[x-1][y];            // use the closest value, which is probably a little too high
-          else {
-            diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y];   // The bed is angled up near this edge. So we will use the closest
-            ubl.z_values[x][y] = ubl.z_values[x-1][y] + diff;     // height and add in the difference between that and the next point
-          }
-          break;
-        }
-      }
+    else {
+      const int8_t dir = f.ey > f.sy ? 1 : -1;
+       for (uint8_t x = f.sx; x != f.ex; ++x)
+        for (uint8_t y = f.sy; y != f.ey; y += dir)
+          if (smart_fill_one(x, y, 0, dir)) break;
     }
   }
 
+  void smart_fill_mesh() {
+    const smart_fill_info info[] = {
+      { 0, GRID_MAX_POINTS_X,      0, GRID_MAX_POINTS_Y - 2,  false },  // Bottom of the mesh looking up
+      { 0, GRID_MAX_POINTS_X,      GRID_MAX_POINTS_Y - 1, 0,  false },  // Top of the mesh looking down
+      { 0, GRID_MAX_POINTS_X - 2,  0, GRID_MAX_POINTS_Y,      true  },  // Left side of the mesh looking right
+      { GRID_MAX_POINTS_X - 1, 0,  0, GRID_MAX_POINTS_Y,      true  }   // Right side of the mesh looking left
+    };
+    for (uint8_t i = 0; i < COUNT(info); ++i) smart_fill_loop(info[i]);
+  }
 
   void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
-    int8_t i, j ,k, xCount, yCount, xi, yi;  // counter variables
-    int8_t ix, iy, zig_zag=0, status;
+    constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
+                      x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
+                      y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
+                      y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
+
+    const float dx = float(x_max - x_min) / (grid_size - 1.0),
+                dy = float(y_max - y_min) / (grid_size - 1.0);
 
-    float dx, dy, x, y, measured_z, inv_z;
     struct linear_fit_data lsf_results;
-    matrix_3x3 rotation;
-    vector_3 normal;
+    incremental_LSF_reset(&lsf_results);
 
-    int16_t x_min = max((MIN_PROBE_X),(UBL_MESH_MIN_X)),
-            x_max = min((MAX_PROBE_X),(UBL_MESH_MAX_X)),
-            y_min = max((MIN_PROBE_Y),(UBL_MESH_MIN_Y)),
-            y_max = min((MAX_PROBE_Y),(UBL_MESH_MAX_Y));
+    bool zig_zag = false;
+    for (uint8_t ix = 0; ix < grid_size; ix++) {
+      const float x = float(x_min) + ix * dx;
+      for (int8_t iy = 0; iy < grid_size; iy++) {
+        const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
+        float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
+        #if ENABLED(DEBUG_LEVELING_FEATURE)
+          if (DEBUGGING(LEVELING)) {
+            SERIAL_CHAR('(');
+            SERIAL_PROTOCOL_F(x, 7);
+            SERIAL_CHAR(',');
+            SERIAL_PROTOCOL_F(y, 7);
+            SERIAL_ECHOPGM(")   logical: ");
+            SERIAL_CHAR('(');
+            SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
+            SERIAL_CHAR(',');
+            SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
+            SERIAL_ECHOPGM(")   measured: ");
+            SERIAL_PROTOCOL_F(measured_z, 7);
+            SERIAL_ECHOPGM("   correction: ");
+            SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
+          }
+        #endif
 
-    dx = ((float)(x_max-x_min)) / (grid_size-1.0);
-    dy = ((float)(y_max-y_min)) / (grid_size-1.0);
+        measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
 
-    incremental_LSF_reset(&lsf_results);
-    for(ix=0; ix<grid_size; ix++) {
-      x = ((float)x_min) + ix*dx;
-      for(iy=0; iy<grid_size; iy++) {
-        if (zig_zag)
-          y = ((float)y_min) + (grid_size-iy-1)*dy;
-        else
-          y = ((float)y_min) + iy*dy;
-          measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
-          #if ENABLED(DEBUG_LEVELING_FEATURE)
-            if (DEBUGGING(LEVELING)) {
-              SERIAL_ECHOPGM("(");
-              SERIAL_PROTOCOL_F( x, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( y, 7);
-              SERIAL_ECHOPGM(")   logical: ");
-              SERIAL_ECHOPGM("(");
-              SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(x), 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(y), 7);
-              SERIAL_ECHOPGM(")   measured: ");
-              SERIAL_PROTOCOL_F( measured_z, 7);
-              SERIAL_ECHOPGM("   correction: ");
-              SERIAL_PROTOCOL_F( ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
+        #if ENABLED(DEBUG_LEVELING_FEATURE)
+          if (DEBUGGING(LEVELING)) {
+            SERIAL_ECHOPGM("   final >>>---> ");
+            SERIAL_PROTOCOL_F(measured_z, 7);
+            SERIAL_EOL;
           }
-          #endif
-          measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
-
-          #if ENABLED(DEBUG_LEVELING_FEATURE)
-            if (DEBUGGING(LEVELING)) {
-              SERIAL_ECHOPGM("   final >>>---> ");
-              SERIAL_PROTOCOL_F( measured_z, 7);
-              SERIAL_ECHOPGM("\n");
-        }
-          #endif
-          incremental_LSF(&lsf_results, x, y, measured_z);
-      }
+        #endif
 
-        zig_zag = !zig_zag;
+        incremental_LSF(&lsf_results, x, y, measured_z);
       }
 
-    status = finish_incremental_LSF(&lsf_results);
-    if (g29_verbose_level>3) {
+      zig_zag ^= true;
+    }
+
+    const int status = finish_incremental_LSF(&lsf_results);
+
+    if (g29_verbose_level > 3) {
       SERIAL_ECHOPGM("LSF Results A=");
-      SERIAL_PROTOCOL_F( lsf_results.A, 7);
+      SERIAL_PROTOCOL_F(lsf_results.A, 7);
       SERIAL_ECHOPGM("  B=");
-      SERIAL_PROTOCOL_F( lsf_results.B, 7);
+      SERIAL_PROTOCOL_F(lsf_results.B, 7);
       SERIAL_ECHOPGM("  D=");
-      SERIAL_PROTOCOL_F( lsf_results.D, 7);
-      SERIAL_CHAR('\n');
-        }
+      SERIAL_PROTOCOL_F(lsf_results.D, 7);
+      SERIAL_EOL;
+    }
 
-    normal = vector_3( lsf_results.A, lsf_results.B, 1.0000);
-    normal = normal.get_normal();
+    vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
 
-    if (g29_verbose_level>2) {
+    if (g29_verbose_level > 2) {
       SERIAL_ECHOPGM("bed plane normal = [");
-      SERIAL_PROTOCOL_F( normal.x, 7);
-      SERIAL_ECHOPGM(",");
-      SERIAL_PROTOCOL_F( normal.y, 7);
-      SERIAL_ECHOPGM(",");
-      SERIAL_PROTOCOL_F( normal.z, 7);
-      SERIAL_ECHOPGM("]\n");
-      }
+      SERIAL_PROTOCOL_F(normal.x, 7);
+      SERIAL_PROTOCOLCHAR(',');
+      SERIAL_PROTOCOL_F(normal.y, 7);
+      SERIAL_PROTOCOLCHAR(',');
+      SERIAL_PROTOCOL_F(normal.z, 7);
+      SERIAL_ECHOLNPGM("]");
+    }
 
-    rotation = matrix_3x3::create_look_at( vector_3( lsf_results.A,  lsf_results.B, 1));
-
-    for (i = 0; i < GRID_MAX_POINTS_X; i++) {
-      for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
-        float x_tmp, y_tmp, z_tmp;
-          x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i]));
-          y_tmp = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
-          z_tmp = ubl.z_values[i][j];
-          #if ENABLED(DEBUG_LEVELING_FEATURE)
-            if (DEBUGGING(LEVELING)) {
-              SERIAL_ECHOPGM("before rotation = [");
-              SERIAL_PROTOCOL_F( x_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( y_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( z_tmp, 7);
-              SERIAL_ECHOPGM("]   ---> ");
-              safe_delay(20);
-        }
-          #endif
-          apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
-          #if ENABLED(DEBUG_LEVELING_FEATURE)
-            if (DEBUGGING(LEVELING)) {
-              SERIAL_ECHOPGM("after rotation = [");
-              SERIAL_PROTOCOL_F( x_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( y_tmp, 7);
-              SERIAL_ECHOPGM(",");
-              SERIAL_PROTOCOL_F( z_tmp, 7);
-              SERIAL_ECHOPGM("]\n");
-              safe_delay(55);
-      }
+    matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
 
-      #endif
+    for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
+      for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
+        float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
+              y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
+              z_tmp = ubl.z_values[i][j];
+
+        #if ENABLED(DEBUG_LEVELING_FEATURE)
+          if (DEBUGGING(LEVELING)) {
+            SERIAL_ECHOPGM("before rotation = [");
+            SERIAL_PROTOCOL_F(x_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(y_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(z_tmp, 7);
+            SERIAL_ECHOPGM("]   ---> ");
+            safe_delay(20);
+          }
+        #endif
 
-          ubl.z_values[i][j] += z_tmp - lsf_results.D;
-        }
-        }
+        apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
+
+        #if ENABLED(DEBUG_LEVELING_FEATURE)
+          if (DEBUGGING(LEVELING)) {
+            SERIAL_ECHOPGM("after rotation = [");
+            SERIAL_PROTOCOL_F(x_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(y_tmp, 7);
+            SERIAL_PROTOCOLCHAR(',');
+            SERIAL_PROTOCOL_F(z_tmp, 7);
+            SERIAL_ECHOLNPGM("]");
+            safe_delay(55);
+          }
+        #endif
+
+        ubl.z_values[i][j] += z_tmp - lsf_results.D;
+      }
+    }
 
     #if ENABLED(DEBUG_LEVELING_FEATURE)
       if (DEBUGGING(LEVELING)) {
-        rotation.debug("rotation matrix:");
+        rotation.debug(PSTR("rotation matrix:"));
         SERIAL_ECHOPGM("LSF Results A=");
-        SERIAL_PROTOCOL_F( lsf_results.A, 7);
+        SERIAL_PROTOCOL_F(lsf_results.A, 7);
         SERIAL_ECHOPGM("  B=");
-        SERIAL_PROTOCOL_F( lsf_results.B, 7);
+        SERIAL_PROTOCOL_F(lsf_results.B, 7);
         SERIAL_ECHOPGM("  D=");
-        SERIAL_PROTOCOL_F( lsf_results.D, 7);
-        SERIAL_CHAR('\n');
+        SERIAL_PROTOCOL_F(lsf_results.D, 7);
+        SERIAL_EOL;
         safe_delay(55);
 
         SERIAL_ECHOPGM("bed plane normal = [");
-        SERIAL_PROTOCOL_F( normal.x, 7);
-        SERIAL_ECHOPGM(",");
-        SERIAL_PROTOCOL_F( normal.y, 7);
-        SERIAL_ECHOPGM(",");
-        SERIAL_PROTOCOL_F( normal.z, 7);
+        SERIAL_PROTOCOL_F(normal.x, 7);
+        SERIAL_PROTOCOLCHAR(',');
+        SERIAL_PROTOCOL_F(normal.y, 7);
+        SERIAL_PROTOCOLCHAR(',');
+        SERIAL_PROTOCOL_F(normal.z, 7);
         SERIAL_ECHOPGM("]\n");
-        SERIAL_CHAR('\n');
+        SERIAL_EOL;
       }
     #endif
-            return;
-          }
+  }
 
 #endif // AUTO_BED_LEVELING_UBL
diff --git a/Marlin/ubl_motion.cpp b/Marlin/ubl_motion.cpp
index cd211c96bab3f6b1b9c554921f423cf042dae6bf..b1f8946e50f11db8332682efe328926438a2c872 100644
--- a/Marlin/ubl_motion.cpp
+++ b/Marlin/ubl_motion.cpp
@@ -154,7 +154,7 @@
        * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
        */
 
-      const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_xpos[cell_dest_xi]))) * (1.0 / (MESH_X_DIST)),
+      const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)),
                   z1 = ubl.z_values[cell_dest_xi    ][cell_dest_yi    ] + xratio *
                       (ubl.z_values[cell_dest_xi + 1][cell_dest_yi    ] - ubl.z_values[cell_dest_xi][cell_dest_yi    ]),
                   z2 = ubl.z_values[cell_dest_xi    ][cell_dest_yi + 1] + xratio *
@@ -163,7 +163,7 @@
       // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
       // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
 
-      const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&(ubl.mesh_index_to_ypos[cell_dest_yi]))) * (1.0 / (MESH_Y_DIST));
+      const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST));
 
       float z0 = z1 + (z2 - z1) * yratio;
 
@@ -198,8 +198,8 @@
     const float dx = end[X_AXIS] - start[X_AXIS],
                 dy = end[Y_AXIS] - start[Y_AXIS];
 
-    const int left_flag = dx < 0.0 ? 1.0 : 0.0,
-              down_flag = dy < 0.0 ? 1.0 : 0.0;
+    const int left_flag = dx < 0.0 ? 1 : 0,
+              down_flag = dy < 0.0 ? 1 : 0;
 
     const float adx = left_flag ? -dx : dx,
                 ady = down_flag ? -dy : dy;
@@ -230,8 +230,8 @@
     const float m = dy / dx,
                 c = start[Y_AXIS] - m * start[X_AXIS];
 
-    const bool inf_normalized_flag=isinf(e_normalized_dist),
-               inf_m_flag=isinf(m);
+    const bool inf_normalized_flag = isinf(e_normalized_dist),
+               inf_m_flag = isinf(m);
     /**
      * This block handles vertical lines. These are lines that stay within the same
      * X Cell column. They do not need to be perfectly vertical. They just can
@@ -241,7 +241,7 @@
       current_yi += down_flag;  // Line is heading down, we just want to go to the bottom
       while (current_yi != cell_dest_yi + down_flag) {
         current_yi += dyi;
-        const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
+        const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
 
         /**
          * if the slope of the line is infinite, we won't do the calculations
@@ -263,7 +263,7 @@
          */
         if (isnan(z0)) z0 = 0.0;
 
-        const float y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi])));
+        const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
 
         /**
          * Without this check, it is possible for the algorithm to generate a zero length move in the case
@@ -274,7 +274,7 @@
         if (y != start[Y_AXIS]) {
           if (!inf_normalized_flag) {
 
-            //on_axis_distance = y - start[Y_AXIS];                               
+            //on_axis_distance = y - start[Y_AXIS];
             on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
 
             //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
@@ -283,7 +283,7 @@
             //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
             //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
 
-            e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;  
+            e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
             z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
           }
           else {
@@ -321,7 +321,7 @@
                                 // edge of this cell for the first move.
       while (current_xi != cell_dest_xi + left_flag) {
         current_xi += dxi;
-        const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi]))),
+        const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])),
                     y = m * next_mesh_line_x + c;   // Calculate Y at the next X mesh line
 
         float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
@@ -337,7 +337,7 @@
          */
         if (isnan(z0)) z0 = 0.0;
 
-        const float x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi])));
+        const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi]));
 
         /**
          * Without this check, it is possible for the algorithm to generate a zero length move in the case
@@ -393,8 +393,8 @@
 
     while (xi_cnt > 0 || yi_cnt > 0) {
 
-      const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[current_xi + dxi]))),
-                  next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[current_yi + dyi]))),
+      const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])),
+                  next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])),
                   y = m * next_mesh_line_x + c,   // Calculate Y at the next X mesh line
                   x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
                                                   // (No need to worry about m being zero.
diff --git a/Marlin/vector_3.cpp b/Marlin/vector_3.cpp
index 731aff813a29eaf5a2c14ae09aad48f15f39088f..3471fedcacf7cffde82bfb77649925b9158d9c89 100644
--- a/Marlin/vector_3.cpp
+++ b/Marlin/vector_3.cpp
@@ -63,7 +63,7 @@ vector_3 vector_3::get_normal() {
   return normalized;
 }
 
-float vector_3::get_length() { return sqrt((x * x) + (y * y) + (z * z)); }
+float vector_3::get_length() { return sqrt(sq(x) + sq(y) + sq(z)); }
 
 void vector_3::normalize() {
   const float inv_length = 1.0 / get_length();
@@ -81,8 +81,8 @@ void vector_3::apply_rotation(matrix_3x3 matrix) {
   z = resultZ;
 }
 
-void vector_3::debug(const char title[]) {
-  SERIAL_PROTOCOL(title);
+void vector_3::debug(const char * const title) {
+  serialprintPGM(title);
   SERIAL_PROTOCOLPGM(" x: ");
   SERIAL_PROTOCOL_F(x, 6);
   SERIAL_PROTOCOLPGM(" y: ");
@@ -101,14 +101,14 @@ void apply_rotation_xyz(matrix_3x3 matrix, float &x, float &y, float &z) {
 }
 
 matrix_3x3 matrix_3x3::create_from_rows(vector_3 row_0, vector_3 row_1, vector_3 row_2) {
-  //row_0.debug("row_0");
-  //row_1.debug("row_1");
-  //row_2.debug("row_2");
+  //row_0.debug(PSTR("row_0"));
+  //row_1.debug(PSTR("row_1"));
+  //row_2.debug(PSTR("row_2"));
   matrix_3x3 new_matrix;
   new_matrix.matrix[0] = row_0.x; new_matrix.matrix[1] = row_0.y; new_matrix.matrix[2] = row_0.z;
   new_matrix.matrix[3] = row_1.x; new_matrix.matrix[4] = row_1.y; new_matrix.matrix[5] = row_1.z;
   new_matrix.matrix[6] = row_2.x; new_matrix.matrix[7] = row_2.y; new_matrix.matrix[8] = row_2.z;
-  //new_matrix.debug("new_matrix");
+  //new_matrix.debug(PSTR("new_matrix"));
   return new_matrix;
 }
 
@@ -123,14 +123,14 @@ matrix_3x3 matrix_3x3::create_look_at(vector_3 target) {
   vector_3 x_row = vector_3(1, 0, -target.x / target.z).get_normal();
   vector_3 y_row = vector_3::cross(z_row, x_row).get_normal();
 
-  // x_row.debug("x_row");
-  // y_row.debug("y_row");
-  // z_row.debug("z_row");
+  // x_row.debug(PSTR("x_row"));
+  // y_row.debug(PSTR("y_row"));
+  // z_row.debug(PSTR("z_row"));
 
   // create the matrix already correctly transposed
   matrix_3x3 rot = matrix_3x3::create_from_rows(x_row, y_row, z_row);
 
-  // rot.debug("rot");
+  // rot.debug(PSTR("rot"));
   return rot;
 }
 
@@ -142,8 +142,8 @@ matrix_3x3 matrix_3x3::transpose(matrix_3x3 original) {
   return new_matrix;
 }
 
-void matrix_3x3::debug(const char title[]) {
-  SERIAL_PROTOCOLLN(title);
+void matrix_3x3::debug(const char * const title) {
+  serialprintPGM(title);
   uint8_t count = 0;
   for (uint8_t i = 0; i < 3; i++) {
     for (uint8_t j = 0; j < 3; j++) {
diff --git a/Marlin/vector_3.h b/Marlin/vector_3.h
index efc0132fe590ab12231b61d1f0fb396ef778e9cc..23ef745a1a0574ccf584e27e8baa8c2d4286821b 100644
--- a/Marlin/vector_3.h
+++ b/Marlin/vector_3.h
@@ -42,6 +42,7 @@
 #define VECTOR_3_H
 
 #if HAS_ABL
+
 class matrix_3x3;
 
 struct vector_3 {
@@ -58,7 +59,7 @@ struct vector_3 {
   float get_length();
   vector_3 get_normal();
 
-  void debug(const char title[]);
+  void debug(const char * const title);
 
   void apply_rotation(matrix_3x3 matrix);
 };
@@ -72,11 +73,11 @@ struct matrix_3x3 {
 
   void set_to_identity();
 
-  void debug(const char title[]);
+  void debug(const char * const title);
 };
 
 
 void apply_rotation_xyz(matrix_3x3 rotationMatrix, float& x, float& y, float& z);
-#endif // HAS_ABL
 
+#endif // HAS_ABL
 #endif // VECTOR_3_H