diff --git a/Marlin/M100_Free_Mem_Chk.cpp b/Marlin/M100_Free_Mem_Chk.cpp
index 5387a71ede701ace72b62149df7a3e7e3667ceac..ccbc1c8b0fc8746e132dd87e7a0ff2b51914fe7f 100644
--- a/Marlin/M100_Free_Mem_Chk.cpp
+++ b/Marlin/M100_Free_Mem_Chk.cpp
@@ -40,8 +40,8 @@
*
* Also, there are two support functions that can be called from a developer's C code.
*
- * uint16_t check_for_free_memory_corruption(char * const ptr);
- * void M100_dump_routine( char *title, char *start, char *end);
+ * uint16_t check_for_free_memory_corruption(const char * const ptr);
+ * void M100_dump_routine(const char * const title, const char *start, const char *end);
*
* Initial version by Roxy-3D
*/
@@ -68,7 +68,7 @@ extern char __bss_end;
//
#define END_OF_HEAP() (__brkval ? __brkval : &__bss_end)
-int check_for_free_memory_corruption(char *title);
+int check_for_free_memory_corruption(const char * const title);
// Location of a variable on its stack frame. Returns a value above
// the stack (once the function returns to the caller).
@@ -86,7 +86,6 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
return -1;
}
-
//
// M100 sub-commands
//
@@ -101,7 +100,7 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
* the block. If so, it may indicate memory corruption due to a bad pointer.
* Unexpected bytes are flagged in the right column.
*/
- void dump_free_memory(uint8_t *ptr, uint8_t *sp) {
+ void dump_free_memory(const uint8_t *ptr, const uint8_t *sp) {
//
// Start and end the dump on a nice 16 byte boundary
// (even though the values are not 16-byte aligned).
@@ -121,17 +120,13 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
safe_delay(25);
SERIAL_CHAR('|'); // Point out non test bytes
for (uint8_t i = 0; i < 16; i++) {
- char ccc;
- ccc = (char) ptr[i];
- if ( &ptr[i]>=&command_queue[0][0] && &ptr[i]<&command_queue[BUFSIZE][MAX_CMD_SIZE]) { // Print out ASCII in the command
- if ( ccc<' ' || ccc>0x7e) // buffer area
- ccc = ' ';
- }
- else
- if (ccc != TEST_BYTE) // If not display data in the command buffer
- ccc = '?'; // area, we flag bytes that don't match the test byte
- else
- ccc = ' ';
+ char ccc = (char)ptr[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken
+ if (&ptr[i] >= command_queue && &ptr[i] < &command_queue[BUFSIZE][MAX_CMD_SIZE]) { // Print out ASCII in the command buffer area
+ if (!WITHIN(ccc, ' ', 0x7E)) ccc = ' ';
+ }
+ else { // If not in the command buffer area, flag bytes that don't match the test byte
+ ccc = (ccc == TEST_BYTE) ? ' ' : '?';
+ }
SERIAL_CHAR(ccc);
}
SERIAL_EOL;
@@ -141,19 +136,16 @@ int16_t count_test_bytes(const uint8_t * const ptr) {
}
}
-void M100_dump_routine( char *title, char *start, char *end) {
-unsigned char c;
-int i;
-
-//
-// Round the start and end locations to produce full lines of output
-//
- start = (char*) ((uint16_t) start & 0xfff0);
- end = (char*) ((uint16_t) end | 0x000f);
-
- SERIAL_ECHOLN(title);
- dump_free_memory( start, end );
+void M100_dump_routine(const char * const title, const char *start, const char *end) {
+ SERIAL_ECHOLN(title);
+ //
+ // Round the start and end locations to produce full lines of output
+ //
+ start = (char*)((uint16_t) start & 0xfff0);
+ end = (char*)((uint16_t) end | 0x000f);
+ dump_free_memory(start, end);
}
+
#endif // M100_FREE_MEMORY_DUMPER
/**
@@ -172,7 +164,7 @@ void free_memory_pool_report(const char * const ptr, const uint16_t size) {
const uint16_t j = count_test_bytes(addr);
if (j > 8) {
SERIAL_ECHOPAIR("Found ", j);
- SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)addr));
+ SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr));
if (j > max_cnt) {
max_cnt = j;
max_addr = addr;
@@ -185,7 +177,7 @@ void free_memory_pool_report(const char * const ptr, const uint16_t size) {
if (block_cnt > 1) {
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
- SERIAL_ECHOLNPAIR(" bytes at 0x", hex_word((uint16_t)max_addr));
+ SERIAL_ECHOLNPAIR(" bytes at ", hex_address(max_addr));
}
SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption("M100 F "));
}
@@ -206,7 +198,7 @@ void free_memory_pool_report(const char * const ptr, const uint16_t size) {
for (uint16_t i = 1; i <= size; i++) {
char * const addr = ptr + i * j;
*addr = i;
- SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)addr));
+ SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
}
SERIAL_EOL;
}
@@ -234,9 +226,10 @@ void init_free_memory(uint8_t *ptr, int16_t size) {
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for (uint16_t i = 0; i < size; i++) {
- if (((char) ptr[i]) != TEST_BYTE) {
- SERIAL_ECHOPAIR("? address : 0x", hex_word((uint16_t)ptr + i));
+ if ((char)ptr[i] != TEST_BYTE) {
+ SERIAL_ECHOPAIR("? address : ", hex_address(ptr + i));
SERIAL_ECHOLNPAIR("=", hex_byte(ptr[i]));
+ SERIAL_EOL;
}
}
}
@@ -245,13 +238,13 @@ void init_free_memory(uint8_t *ptr, int16_t size) {
* M100: Free Memory Check
*/
void gcode_M100() {
- SERIAL_ECHOPAIR("\n__brkval : 0x", hex_word((uint16_t)__brkval));
- SERIAL_ECHOPAIR("\n__bss_end: 0x", hex_word((uint16_t)&__bss_end));
+ SERIAL_ECHOPAIR("\n__brkval : ", hex_address(__brkval));
+ SERIAL_ECHOPAIR("\n__bss_end : ", hex_address(&__bss_end));
uint8_t *ptr = END_OF_HEAP(), *sp = top_of_stack();
- SERIAL_ECHOPAIR("\nstart of free space : 0x", hex_word((uint16_t)ptr));
- SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
+ SERIAL_ECHOPAIR("\nstart of free space : ", hex_address(ptr));
+ SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp));
// Always init on the first invocation of M100
static bool m100_not_initialized = true;
@@ -276,68 +269,66 @@ void gcode_M100() {
#endif
}
-int check_for_free_memory_corruption(char *title) {
- char *sp, *ptr;
- int block_cnt = 0, i, j, n;
-
- SERIAL_ECHO(title);
-
- ptr = __brkval ? __brkval : &__bss_end;
- sp = top_of_stack();
-
- n = sp - ptr;
- SERIAL_ECHOPAIR("\nfmc() n=", n);
- SERIAL_ECHOPAIR("\n&__brkval: 0x", hex_word((uint16_t)&__brkval));
- SERIAL_ECHOPAIR("=0x", hex_word((uint16_t)__brkval));
- SERIAL_ECHOPAIR("\n__bss_end: 0x", hex_word((uint16_t)&__bss_end));
- SERIAL_ECHOPAIR(" sp=", hex_word(sp));
-
- if (sp < ptr) {
- SERIAL_ECHOPGM(" sp < Heap ");
-// SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board
-// safe_delay(5); // this code can be enabled to pause the display as soon as the
-// while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch
-// idle(); // being on pin-63 which is unassigend and available on most controller
-// safe_delay(20); // boards.
-// while ( !READ(63))
-// idle();
- safe_delay(20);
- #ifdef M100_FREE_MEMORY_DUMPER
- M100_dump_routine( " Memory corruption detected with sp<Heap\n", (char *)0x1b80, 0x21ff );
- #endif
- }
+int check_for_free_memory_corruption(const char * const title) {
+ SERIAL_ECHO(title);
+
+ char *ptr = END_OF_HEAP(), *sp = top_of_stack();
+ int n = sp - ptr;
+
+ SERIAL_ECHOPAIR("\nfmc() n=", n);
+ SERIAL_ECHOPAIR("\n&__brkval: ", hex_address(&__brkval));
+ SERIAL_ECHOPAIR("=", hex_address(__brkval));
+ SERIAL_ECHOPAIR("\n__bss_end: ", hex_address(&__bss_end));
+ SERIAL_ECHOPAIR(" sp=", hex_address(sp));
+
+ if (sp < ptr) {
+ SERIAL_ECHOPGM(" sp < Heap ");
+ // SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board
+ // safe_delay(5); // this code can be enabled to pause the display as soon as the
+ // while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch
+ // idle(); // being on pin-63 which is unassigend and available on most controller
+ // safe_delay(20); // boards.
+ // while ( !READ(63))
+ // idle();
+ safe_delay(20);
+ #ifdef M100_FREE_MEMORY_DUMPER
+ M100_dump_routine(" Memory corruption detected with sp<Heap\n", (char*)0x1B80, 0x21FF);
+ #endif
+ }
- // Scan through the range looking for the biggest block of 0xE5's we can find
- for (i = 0; i < n; i++) {
- if (*(ptr + i) == (char)0xe5) {
- j = count_test_bytes(ptr + i);
- if (j > 8) {
-// SERIAL_ECHOPAIR("Found ", j);
-// SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
-
- i += j;
- block_cnt++;
- SERIAL_ECHOPAIR(" (", block_cnt);
- SERIAL_ECHOPAIR(") found=", j);
- SERIAL_ECHOPGM(" ");
- }
+ // Scan through the range looking for the biggest block of 0xE5's we can find
+ int block_cnt = 0;
+ for (int i = 0; i < n; i++) {
+ if (ptr[i] == TEST_BYTE) {
+ int16_t j = count_test_bytes(ptr + i);
+ if (j > 8) {
+ // SERIAL_ECHOPAIR("Found ", j);
+ // SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i));
+ i += j;
+ block_cnt++;
+ SERIAL_ECHOPAIR(" (", block_cnt);
+ SERIAL_ECHOPAIR(") found=", j);
+ SERIAL_ECHOPGM(" ");
}
}
- SERIAL_ECHOPAIR(" block_found=", block_cnt);
+ }
+ SERIAL_ECHOPAIR(" block_found=", block_cnt);
- if ((block_cnt!=1) || (__brkval != 0x0000))
- SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
+ if (block_cnt != 1 || __brkval != 0x0000)
+ SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
- if ((block_cnt==0)) // Make sure the special case of no free blocks shows up as an
- block_cnt = -1; // error to the calling code!
+ if (block_cnt == 0) // Make sure the special case of no free blocks shows up as an
+ block_cnt = -1; // error to the calling code!
- if (block_cnt==1) {
- SERIAL_ECHOPGM(" return=0\n"); // if the block_cnt is 1, nothing has broken up the free memory
- return 0; // area and it is appropriate to say 'no corruption'.
- }
- SERIAL_ECHOPGM(" return=true\n");
- return block_cnt;
+ SERIAL_ECHOPGM(" return=");
+ if (block_cnt == 1) {
+ SERIAL_CHAR('0'); // if the block_cnt is 1, nothing has broken up the free memory
+ SERIAL_EOL; // area and it is appropriate to say 'no corruption'.
+ return 0;
}
+ SERIAL_ECHOLNPGM("true");
+ return block_cnt;
+}
#endif // M100_FREE_MEMORY_WATCHER
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index a1b030219300b25e641395ac34d9625e9b085fd1..4f6b31a703dc40d18292f9b75a30716eef0769b7 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -284,7 +284,7 @@
#if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100();
- void M100_dump_routine( char *title, char *start, char *end);
+ void M100_dump_routine(const char * const title, const char *start, const char *end);
#endif
#if ENABLED(SDSUPPORT)
@@ -1091,7 +1091,7 @@ inline void get_serial_commands() {
if (IsStopped()) {
char* gpos = strchr(command, 'G');
if (gpos) {
- int codenum = strtol(gpos + 1, NULL, 10);
+ const int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) {
case 0:
case 1:
@@ -4167,17 +4167,25 @@ inline void gcode_G28() {
#define ABL_VAR
#endif
- ABL_VAR int verbose_level, abl_probe_index;
+ ABL_VAR int verbose_level;
ABL_VAR float xProbe, yProbe, measured_z;
ABL_VAR bool dryrun, abl_should_enable;
+ #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
+ ABL_VAR int abl_probe_index;
+ #endif
+
#if HAS_SOFTWARE_ENDSTOPS
ABL_VAR bool enable_soft_endstops = true;
#endif
#if ABL_GRID
- ABL_VAR uint8_t PR_OUTER_VAR;
- ABL_VAR int8_t PR_INNER_VAR;
+
+ #if ENABLED(PROBE_MANUALLY)
+ ABL_VAR uint8_t PR_OUTER_VAR;
+ ABL_VAR int8_t PR_INNER_VAR;
+ #endif
+
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
ABL_VAR float xGridSpacing, yGridSpacing;
@@ -4186,13 +4194,18 @@ inline void gcode_G28() {
#if ABL_PLANAR
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
- ABL_VAR int abl2;
ABL_VAR bool do_topography_map;
#else // 3-point
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
abl_grid_points_y = GRID_MAX_POINTS_Y;
+ #endif
- int constexpr abl2 = ABL_GRID_MAX;
+ #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
+ #if ABL_PLANAR
+ ABL_VAR int abl2;
+ #else // 3-point
+ int constexpr abl2 = ABL_GRID_MAX;
+ #endif
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@@ -4224,7 +4237,10 @@ inline void gcode_G28() {
*/
if (!g29_in_progress) {
- abl_probe_index = 0;
+ #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
+ abl_probe_index = 0;
+ #endif
+
abl_should_enable = planner.abl_enabled;
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
@@ -4284,7 +4300,7 @@ inline void gcode_G28() {
return;
}
- dryrun = code_seen('D') ? code_value_bool() : false;
+ dryrun = code_seen('D') && code_value_bool();
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
@@ -4455,7 +4471,7 @@ inline void gcode_G28() {
g29_in_progress = true;
if (abl_probe_index == 0) {
- // For the initial G29 S2 save software endstop state
+ // For the initial G29 save software endstop state
#if HAS_SOFTWARE_ENDSTOPS
enable_soft_endstops = soft_endstops_enabled;
#endif
@@ -4586,7 +4602,6 @@ inline void gcode_G28() {
#else // !PROBE_MANUALLY
-
bool stow_probe_after_each = code_seen('E');
#if ABL_GRID
@@ -4927,14 +4942,12 @@ inline void gcode_G28() {
* S = Stows the probe if 1 (default=1)
*/
inline void gcode_G30() {
- float X_probe_location = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
- Y_probe_location = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
+ const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
+ ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
+ pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
- float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
if (!position_is_reachable(pos, true)) return;
- bool stow = code_seen('S') ? code_value_bool() : true;
-
// Disable leveling so the planner won't mess with us
#if PLANNER_LEVELING
set_bed_leveling_enabled(false);
@@ -4942,14 +4955,11 @@ inline void gcode_G28() {
setup_for_endstop_or_probe_move();
- float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
+ const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
- SERIAL_PROTOCOLPGM("Bed X: ");
- SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
- SERIAL_PROTOCOLPGM(" Y: ");
- SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
- SERIAL_PROTOCOLPGM(" Z: ");
- SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
+ SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
+ SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
+ SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
clean_up_after_endstop_or_probe_move();
@@ -5466,7 +5476,7 @@ inline void gcode_G92() {
* M1: Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
- char* args = current_command_args;
+ const char * const args = current_command_args;
millis_t codenum = 0;
bool hasP = false, hasS = false;
@@ -5524,7 +5534,7 @@ inline void gcode_G92() {
KEEPALIVE_STATE(IN_HANDLER);
}
-#endif // EMERGENCY_PARSER || ULTIPANEL
+#endif // HAS_RESUME_CONTINUE
/**
* M17: Enable power on all stepper motors
@@ -5806,70 +5816,94 @@ inline void gcode_M42() {
#include "pinsDebug.h"
inline void toggle_pins() {
- int pin, j;
-
- bool I_flag = code_seen('I') ? code_value_bool() : false;
-
- int repeat = code_seen('R') ? code_value_int() : 1,
- start = code_seen('S') ? code_value_int() : 0,
- end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
- wait = code_seen('W') ? code_value_int() : 500;
+ const bool I_flag = code_seen('I') && code_value_bool();
+ const int repeat = code_seen('R') ? code_value_int() : 1,
+ start = code_seen('S') ? code_value_int() : 0,
+ end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
+ wait = code_seen('W') ? code_value_int() : 500;
- for (pin = start; pin <= end; pin++) {
- if (!I_flag && pin_is_protected(pin)) {
- SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
- SERIAL_ECHOPGM(" untouched.\n");
- }
- else {
- SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
- pinMode(pin, OUTPUT);
- for(j = 0; j < repeat; j++) {
- digitalWrite(pin, 0);
- safe_delay(wait);
- digitalWrite(pin, 1);
- safe_delay(wait);
- digitalWrite(pin, 0);
- safe_delay(wait);
- }
+ for (uint8_t pin = start; pin <= end; pin++) {
+ if (!I_flag && pin_is_protected(pin)) {
+ SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
+ SERIAL_ECHOLNPGM(" untouched.");
+ }
+ else {
+ SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
+ pinMode(pin, OUTPUT);
+ for (int16_t j = 0; j < repeat; j++) {
+ digitalWrite(pin, 0);
+ safe_delay(wait);
+ digitalWrite(pin, 1);
+ safe_delay(wait);
+ digitalWrite(pin, 0);
+ safe_delay(wait);
}
- SERIAL_ECHOPGM("\n");
+ }
+ SERIAL_CHAR('\n');
}
- SERIAL_ECHOPGM("Done\n");
+ SERIAL_ECHOLNPGM("Done.");
+
} // toggle_pins
- inline void servo_probe_test(){
- #if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
+ inline void servo_probe_test() {
+ #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
+
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("SERVO not setup");
+
#elif !HAS_Z_SERVO_ENDSTOP
+
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
+
#else
- uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
+
+ #if !defined(z_servo_angle)
+ const int z_servo_angle[2] = Z_SERVO_ANGLES;
+ #endif
+
+ const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
+
SERIAL_PROTOCOLLNPGM("Servo probe test");
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
+
bool probe_inverting;
+
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
+
#define PROBE_TEST_PIN Z_MIN_PIN
+
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
- if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
- else SERIAL_PROTOCOLLNPGM("false");
+
+ #if Z_MIN_ENDSTOP_INVERTING
+ SERIAL_PROTOCOLLNPGM("true");
+ #else
+ SERIAL_PROTOCOLLNPGM("false");
+ #endif
+
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
+
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
+
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
- if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
- else SERIAL_PROTOCOLLNPGM("false");
+
+ #if Z_MIN_PROBE_ENDSTOP_INVERTING
+ SERIAL_PROTOCOLLNPGM("true");
+ #else
+ SERIAL_PROTOCOLLNPGM("false");
+ #endif
+
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
- #else
- #error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
+
#endif
+
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
bool deploy_state;
@@ -5883,7 +5917,9 @@ inline void gcode_M42() {
stow_state = digitalRead(PROBE_TEST_PIN);
}
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
+
refresh_cmd_timeout();
+
if (deploy_state != stow_state) {
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
if (deploy_state) {
@@ -5900,32 +5936,43 @@ inline void gcode_M42() {
}
else { // measure active signal length
- servo[probe_index].move(z_servo_angle[0]); //deploy
+ servo[probe_index].move(z_servo_angle[0]); // deploy
safe_delay(500);
SERIAL_PROTOCOLLNPGM("please trigger probe");
uint16_t probe_counter = 0;
- for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
+
+ // Allow 30 seconds max for operator to trigger probe
+ for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
+
safe_delay(2);
- if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
- if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
- for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
+
+ if (0 == j % (500 * 1)) // keep cmd_timeout happy
+ refresh_cmd_timeout();
+
+ if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
+
+ for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
safe_delay(2);
- }
- if (probe_counter == 50) {
- SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
- }
- else if (probe_counter >= 2 ) {
- SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
- }
- else {
- SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
- }
+
+ if (probe_counter == 50)
+ SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
+ else if (probe_counter >= 2)
+ SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
+ else
+ SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
+
servo[probe_index].move(z_servo_angle[1]); //stow
+
} // pulse detected
- } // for loop waiting for trigger
+
+ } // for loop waiting for trigger
+
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
- } // measure active signal length
+
+ } // measure active signal length
+
#endif
+
} // servo_probe_test
/**
@@ -5977,39 +6024,43 @@ inline void gcode_M42() {
}
// Get the range of pins to test or watch
- int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
- if (code_seen('P')) {
- first_pin = last_pin = code_value_byte();
- if (first_pin > NUM_DIGITAL_PINS - 1) return;
- }
+ const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
+ last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
- bool ignore_protection = code_seen('I') ? code_value_bool() : false;
+ if (first_pin > last_pin) return;
+
+ const bool ignore_protection = code_seen('I') && code_value_bool();
// Watch until click, M108, or reset
- if (code_seen('W') && code_value_bool()) { // watch digital pins
+ if (code_seen('W') && code_value_bool()) {
SERIAL_PROTOCOLLNPGM("Watching pins");
byte pin_state[last_pin - first_pin + 1];
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
if (pin_is_protected(pin) && !ignore_protection) continue;
pinMode(pin, INPUT_PULLUP);
- // if (IS_ANALOG(pin))
- // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
- // else
- pin_state[pin - first_pin] = digitalRead(pin);
+ /*
+ if (IS_ANALOG(pin))
+ pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
+ else
+ //*/
+ pin_state[pin - first_pin] = digitalRead(pin);
}
#if HAS_RESUME_CONTINUE
wait_for_user = true;
+ KEEPALIVE_STATE(PAUSED_FOR_USER);
#endif
- for(;;) {
+ for (;;) {
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
if (pin_is_protected(pin)) continue;
- byte val;
- // if (IS_ANALOG(pin))
- // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
- // else
- val = digitalRead(pin);
+ const byte val =
+ /*
+ IS_ANALOG(pin)
+ ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
+ :
+ //*/
+ digitalRead(pin);
if (val != pin_state[pin - first_pin]) {
report_pin_state(pin);
pin_state[pin - first_pin] = val;
@@ -6017,7 +6068,10 @@ inline void gcode_M42() {
}
#if HAS_RESUME_CONTINUE
- if (!wait_for_user) break;
+ if (!wait_for_user) {
+ KEEPALIVE_STATE(IN_HANDLER);
+ break;
+ }
#endif
safe_delay(500);
@@ -9571,8 +9625,8 @@ void process_next_command() {
SERIAL_ECHO_START;
SERIAL_ECHOLN(current_command);
#if ENABLED(M100_FREE_MEMORY_WATCHER)
- SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
- M100_dump_routine( " Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE] );
+ SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
+ M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
#endif
}
@@ -11166,19 +11220,20 @@ void prepare_move_to_destination() {
*/
void plan_arc(
float logical[XYZE], // Destination position
- float* offset, // Center of rotation relative to current_position
- uint8_t clockwise // Clockwise?
+ float *offset, // Center of rotation relative to current_position
+ uint8_t clockwise // Clockwise?
) {
- float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
- center_X = current_position[X_AXIS] + offset[X_AXIS],
- center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
- linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
- extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
- r_X = -offset[X_AXIS], // Radius vector from center to current location
- r_Y = -offset[Y_AXIS],
- rt_X = logical[X_AXIS] - center_X,
- rt_Y = logical[Y_AXIS] - center_Y;
+ float r_X = -offset[X_AXIS], // Radius vector from center to current location
+ r_Y = -offset[Y_AXIS];
+
+ const float radius = HYPOT(r_X, r_Y),
+ center_X = current_position[X_AXIS] - r_X,
+ center_Y = current_position[Y_AXIS] - r_Y,
+ rt_X = logical[X_AXIS] - center_X,
+ rt_Y = logical[Y_AXIS] - center_Y,
+ linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
+ extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
@@ -11222,12 +11277,12 @@ void prepare_move_to_destination() {
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
- float arc_target[XYZE],
- theta_per_segment = angular_travel / segments,
- linear_per_segment = linear_travel / segments,
- extruder_per_segment = extruder_travel / segments,
- sin_T = theta_per_segment,
- cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
+ float arc_target[XYZE];
+ const float theta_per_segment = angular_travel / segments,
+ linear_per_segment = linear_travel / segments,
+ extruder_per_segment = extruder_travel / segments,
+ sin_T = theta_per_segment,
+ cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
// Initialize the linear axis
arc_target[Z_AXIS] = current_position[Z_AXIS];
@@ -11235,7 +11290,7 @@ void prepare_move_to_destination() {
// Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
- float fr_mm_s = MMS_SCALED(feedrate_mm_s);
+ const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
millis_t next_idle_ms = millis() + 200UL;
@@ -11250,7 +11305,7 @@ void prepare_move_to_destination() {
if (++count < N_ARC_CORRECTION) {
// Apply vector rotation matrix to previous r_X / 1
- float r_new_Y = r_X * sin_T + r_Y * cos_T;
+ const float r_new_Y = r_X * sin_T + r_Y * cos_T;
r_X = r_X * cos_T - r_Y * sin_T;
r_Y = r_new_Y;
}
@@ -11259,8 +11314,8 @@ void prepare_move_to_destination() {
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
- float cos_Ti = cos(i * theta_per_segment),
- sin_Ti = sin(i * theta_per_segment);
+ const float cos_Ti = cos(i * theta_per_segment),
+ sin_Ti = sin(i * theta_per_segment);
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
count = 0;
@@ -11774,30 +11829,15 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
enable_E0();
#else // !SWITCHING_EXTRUDER
switch (active_extruder) {
- case 0:
- oldstatus = E0_ENABLE_READ;
- enable_E0();
- break;
+ case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
#if E_STEPPERS > 1
- case 1:
- oldstatus = E1_ENABLE_READ;
- enable_E1();
- break;
+ case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
#if E_STEPPERS > 2
- case 2:
- oldstatus = E2_ENABLE_READ;
- enable_E2();
- break;
+ case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
#if E_STEPPERS > 3
- case 3:
- oldstatus = E3_ENABLE_READ;
- enable_E3();
- break;
+ case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
#if E_STEPPERS > 4
- case 4:
- oldstatus = E4_ENABLE_READ;
- enable_E4();
- break;
+ case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
@@ -11817,25 +11857,15 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
E0_ENABLE_WRITE(oldstatus);
#else
switch (active_extruder) {
- case 0:
- E0_ENABLE_WRITE(oldstatus);
- break;
+ case 0: E0_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 1
- case 1:
- E1_ENABLE_WRITE(oldstatus);
- break;
+ case 1: E1_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 2
- case 2:
- E2_ENABLE_WRITE(oldstatus);
- break;
+ case 2: E2_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 3
- case 3:
- E3_ENABLE_WRITE(oldstatus);
- break;
+ case 3: E3_ENABLE_WRITE(oldstatus); break;
#if E_STEPPERS > 4
- case 4:
- E4_ENABLE_WRITE(oldstatus);
- break;
+ case 4: E4_ENABLE_WRITE(oldstatus); break;
#endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2
diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp
index cf513c18f25c03492ff740eab70302803e003c85..fb82f237044d17b6830007e1c30bc1dc9a655271 100644
--- a/Marlin/configuration_store.cpp
+++ b/Marlin/configuration_store.cpp
@@ -339,7 +339,10 @@ void MarlinSettings::postprocess() {
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
- typedef char c_assert[(sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
+ static_assert(
+ sizeof(mbl.z_values) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(mbl.z_values[0][0]),
+ "MBL Z array is the wrong size."
+ );
const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(leveling_is_on);
@@ -381,7 +384,10 @@ void MarlinSettings::postprocess() {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(bed_level_grid) is as expected
- typedef char c_assert[(sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(dummy)) ? 1 : -1];
+ static_assert(
+ sizeof(bed_level_grid) == (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y) * sizeof(bed_level_grid[0][0]),
+ "Bilinear Z array is the wrong size."
+ );
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte
diff --git a/Marlin/hex_print_routines.cpp b/Marlin/hex_print_routines.cpp
index 02b07754d147eeba82e34e35f83c27717cedc096..39e5b4cd738dca3699dfd6214d48a15f9af5db93 100644
--- a/Marlin/hex_print_routines.cpp
+++ b/Marlin/hex_print_routines.cpp
@@ -19,32 +19,35 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
-
-
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
#include "hex_print_routines.h"
-static char _hex[5] = { 0 };
+static char _hex[7] = "0x0000";
char* hex_byte(const uint8_t b) {
- _hex[0] = hex_nybble(b >> 4);
- _hex[1] = hex_nybble(b);
- _hex[2] = '\0';
- return _hex;
+ _hex[4] = hex_nybble(b >> 4);
+ _hex[5] = hex_nybble(b);
+ return &_hex[4];
}
char* hex_word(const uint16_t w) {
- _hex[0] = hex_nybble(w >> 12);
- _hex[1] = hex_nybble(w >> 8);
- _hex[2] = hex_nybble(w >> 4);
- _hex[3] = hex_nybble(w);
+ _hex[2] = hex_nybble(w >> 12);
+ _hex[3] = hex_nybble(w >> 8);
+ _hex[4] = hex_nybble(w >> 4);
+ _hex[5] = hex_nybble(w);
+ return &_hex[2];
+}
+
+char* hex_address(const void * const w) {
+ (void)hex_word((uint16_t)w);
return _hex;
}
-void print_hex_nybble(const uint8_t n) { SERIAL_CHAR(hex_nybble(n)); }
-void print_hex_byte(const uint8_t b) { SERIAL_ECHO(hex_byte(b)); }
-void print_hex_word(const uint16_t w) { SERIAL_ECHO(hex_word(w)); }
+void print_hex_nybble(const uint8_t n) { SERIAL_CHAR(hex_nybble(n)); }
+void print_hex_byte(const uint8_t b) { SERIAL_ECHO(hex_byte(b)); }
+void print_hex_word(const uint16_t w) { SERIAL_ECHO(hex_word(w)); }
+void print_hex_address(const void * const w) { SERIAL_ECHO(hex_address(w)); }
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
diff --git a/Marlin/hex_print_routines.h b/Marlin/hex_print_routines.h
index c5c4f759f008781da85350649cfea41b50a74cac..ea407333183d682bd7c32a16920c6917708fb967 100644
--- a/Marlin/hex_print_routines.h
+++ b/Marlin/hex_print_routines.h
@@ -36,10 +36,12 @@ inline char hex_nybble(const uint8_t n) {
}
char* hex_byte(const uint8_t b);
char* hex_word(const uint16_t w);
+char* hex_address(const void * const w);
void print_hex_nybble(const uint8_t n);
void print_hex_byte(const uint8_t b);
void print_hex_word(const uint16_t w);
+void print_hex_address(const void * const w);
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
#endif // HEX_PRINT_ROUTINES_H
diff --git a/Marlin/pinsDebug.h b/Marlin/pinsDebug.h
index a60b7449cdbf310060454c6bd393c70ff7982d9a..a40d1480df66d7a20731b1de9b20a22481d2e60b 100644
--- a/Marlin/pinsDebug.h
+++ b/Marlin/pinsDebug.h
@@ -255,12 +255,11 @@ static void err_is_counter() {
SERIAL_PROTOCOLPGM(" non-standard PWM mode");
}
static void err_is_interrupt() {
- SERIAL_PROTOCOLPGM(" compare interrupt enabled ");
+ SERIAL_PROTOCOLPGM(" compare interrupt enabled");
}
static void err_prob_interrupt() {
SERIAL_PROTOCOLPGM(" overflow interrupt enabled");
}
-static void can_be_used() { SERIAL_PROTOCOLPGM(" can be used as PWM "); }
void com_print(uint8_t N, uint8_t Z) {
uint8_t *TCCRA = (uint8_t*) TCCR_A(N);
@@ -325,9 +324,6 @@ void timer_prefix(uint8_t T, char L, uint8_t N) { // T - timer L - pwm n -
}
static void pwm_details(uint8_t pin) {
- char buffer[20]; // for the sprintf statements
- uint8_t WGM;
-
switch(digitalPinToTimer(pin)) {
#if defined(TCCR0A) && defined(COM0A1)
@@ -524,7 +520,7 @@ inline void report_pin_state_extended(int8_t pin, bool ignore, bool extended = t
SERIAL_PROTOCOLPAIR(" Input = ", digitalRead_mod(pin));
}
- //if (!pwm_status(pin)) SERIAL_ECHOCHAR(' '); // add padding if it's not a PWM pin
+ //if (!pwm_status(pin)) SERIAL_CHAR(' '); // add padding if it's not a PWM pin
if (extended) pwm_details(pin); // report PWM capabilities only if doing an extended report
SERIAL_EOL;
}
diff --git a/Marlin/ubl.cpp b/Marlin/ubl.cpp
index 1dce269840cf3eec8fa47a0ea78cdb536127b5c8..056632d24dab49bdda2ff0cd3831093163d57b1c 100644
--- a/Marlin/ubl.cpp
+++ b/Marlin/ubl.cpp
@@ -118,7 +118,7 @@
eeprom_read_block((void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPAIR("Mesh loaded from slot ", m);
- SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
+ SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
}
void unified_bed_leveling::store_mesh(const int16_t m) {
@@ -140,7 +140,7 @@
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPAIR("Mesh saved in slot ", m);
- SERIAL_PROTOCOLLNPAIR(" at offset 0x", hex_word(j));
+ SERIAL_PROTOCOLLNPAIR(" at offset ", hex_address((void*)j));
}
void unified_bed_leveling::reset() {
diff --git a/Marlin/ubl_G29.cpp b/Marlin/ubl_G29.cpp
index f6e2b13ab67c22c25c0519ce6d074e42bb767252..6c4fcd23a71f8a1f41fab9f77da296a87a6689e8 100644
--- a/Marlin/ubl_G29.cpp
+++ b/Marlin/ubl_G29.cpp
@@ -35,7 +35,6 @@
#include <math.h>
- void lcd_babystep_z();
void lcd_return_to_status();
bool lcd_clicked();
void lcd_implementation_clear();
@@ -305,7 +304,7 @@
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
static int g29_verbose_level, phase_value = -1, repetition_cnt,
- storage_slot=0, map_type, grid_size;
+ storage_slot = 0, map_type, grid_size;
static bool repeat_flag, c_flag, x_flag, y_flag;
static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
@@ -330,13 +329,10 @@
// Invalidate Mesh Points. This command is a little bit asymetrical because
// it directly specifies the repetition count and does not use the 'R' parameter.
if (code_seen('I')) {
- int cnt = 0;
+ uint8_t cnt = 0;
repetition_cnt = code_has_value() ? code_value_int() : 1;
while (repetition_cnt--) {
- if (cnt>20) {
- cnt = 0;
- idle();
- }
+ if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
@@ -381,7 +377,7 @@
}
if (code_seen('J')) {
- if (grid_size<2 || grid_size>5) {
+ if (!WITHIN(grid_size, 2, 5)) {
SERIAL_PROTOCOLLNPGM("ERROR - grid size must be between 2 and 5");
return;
}
@@ -996,7 +992,7 @@
repetition_cnt = 0;
repeat_flag = code_seen('R');
if (repeat_flag) {
- repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS_X*GRID_MAX_POINTS_Y;
+ repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
if (repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
return UBL_ERR;
@@ -1206,9 +1202,9 @@
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL;
safe_delay(50);
- SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
+ SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: ", hex_address((void*)ubl.eeprom_start));
- SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END));
+ SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_address((void*)E2END));
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
@@ -1217,7 +1213,7 @@
SERIAL_EOL;
safe_delay(50);
- SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
+ SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)k));
safe_delay(50);
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
@@ -1295,7 +1291,7 @@
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
- SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
+ SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_address((void*)j)); // Soon, we can remove the extra clutter of printing
// the address in the EEPROM where the Mesh is stored.
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)