From 443e6d26fe624736dc1f38ced52da0d34ad55f90 Mon Sep 17 00:00:00 2001
From: jbrazio <jbrazio@gmail.com>
Date: Sun, 27 Mar 2016 04:36:36 +0100
Subject: [PATCH] Formatted multi-line comments
---
Marlin/Marlin_main.cpp | 375 ++++++++++++++++++++++++++---------------
1 file changed, 235 insertions(+), 140 deletions(-)
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 4769c397d7..38eef424c5 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -456,9 +456,11 @@ static bool send_ok[BUFSIZE];
#define KEEPALIVE_STATE(n) ;
#endif // HOST_KEEPALIVE_FEATURE
-//===========================================================================
-//================================ Functions ================================
-//===========================================================================
+/**
+ * ***************************************************************************
+ * ******************************** FUNCTIONS ********************************
+ * ***************************************************************************
+ */
void process_next_command();
@@ -877,16 +879,16 @@ void get_command() {
}
#endif
- //
- // Loop while serial characters are incoming and the queue is not full
- //
+ /**
+ * Loop while serial characters are incoming and the queue is not full
+ */
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
char serial_char = MYSERIAL.read();
- //
- // If the character ends the line
- //
+ /**
+ * If the character ends the line
+ */
if (serial_char == '\n' || serial_char == '\r') {
serial_comment_mode = false; // end of line == end of comment
@@ -994,9 +996,12 @@ void get_command() {
if (!card.sdprinting) return;
- // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
- // if it occurs, stop_buffering is triggered and the buffer is run dry.
- // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
+ /**
+ * '#' stops reading from SD to the buffer prematurely, so procedural
+ * macro calls are possible. If it occurs, stop_buffering is triggered
+ * and the buffer is run dry; this character _can_ occur in serial com
+ * due to checksums, however, no checksums are used in SD printing.
+ */
if (commands_in_queue == 0) stop_buffering = false;
@@ -1035,8 +1040,10 @@ void get_command() {
_commit_command(false);
}
else if (sd_count >= MAX_CMD_SIZE - 1) {
- // Keep fetching, but ignore normal characters beyond the max length
- // The command will be injected when EOL is reached
+ /**
+ * Keep fetching, but ignore normal characters beyond the max length
+ * The command will be injected when EOL is reached
+ */
}
else {
if (sd_char == ';') sd_comment_mode = true;
@@ -1110,10 +1117,12 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
if (extruder == 0)
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
else
- // In dual carriage mode the extruder offset provides an override of the
- // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
- // This allow soft recalibration of the second extruder offset position without firmware reflash
- // (through the M218 command).
+ /**
+ * In dual carriage mode the extruder offset provides an override of the
+ * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
+ * This allow soft recalibration of the second extruder offset position
+ * without firmware reflash (through the M218 command).
+ */
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
}
@@ -1173,8 +1182,11 @@ static void set_axis_is_at_home(AxisEnum axis) {
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
- // Works out real Homeposition angles using inverse kinematics,
- // and calculates homing offset using forward kinematics
+
+ /**
+ * Works out real Homeposition angles using inverse kinematics,
+ * and calculates homing offset using forward kinematics
+ */
calculate_delta(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
@@ -1194,8 +1206,10 @@ static void set_axis_is_at_home(AxisEnum axis) {
current_position[axis] = delta[axis];
- // SCARA home positions are based on configuration since the actual limits are determined by the
- // inverse kinematic transform.
+ /**
+ * SCARA home positions are based on configuration since the actual
+ * limits are determined by the inverse kinematic transform.
+ */
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
@@ -1357,7 +1371,11 @@ static void setup_for_endstop_move() {
static void run_z_probe() {
- refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
+ /**
+ * To prevent stepper_inactive_time from running out and
+ * EXTRUDER_RUNOUT_PREVENT from extruding
+ */
+ refresh_cmd_timeout();
#if ENABLED(DELTA)
@@ -1377,7 +1395,10 @@ static void setup_for_endstop_move() {
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
- // we have to let the planner know where we are right now as it is not where we said to go.
+ /**
+ * We have to let the planner know where we are right now as it
+ * is not where we said to go.
+ */
long stop_steps = st_get_position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
@@ -1402,7 +1423,10 @@ static void setup_for_endstop_move() {
// Tell the planner where we ended up - Get this from the stepper handler
zPosition = st_get_axis_position_mm(Z_AXIS);
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
+ plan_set_position(
+ current_position[X_AXIS], current_position[Y_AXIS], zPosition,
+ current_position[E_AXIS]
+ );
// move up the retract distance
zPosition += home_bump_mm(Z_AXIS);
@@ -1474,10 +1498,21 @@ static void setup_for_endstop_move() {
feedrate = oldFeedRate;
}
- inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
- inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
- inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
- inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
+ inline void do_blocking_move_to_xy(float x, float y) {
+ do_blocking_move_to(x, y, current_position[Z_AXIS]);
+ }
+
+ inline void do_blocking_move_to_x(float x) {
+ do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
+ }
+
+ inline void do_blocking_move_to_z(float z) {
+ do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
+ }
+
+ inline void raise_z_after_probing() {
+ do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
+ }
static void clean_up_after_endstop_move() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -1729,7 +1764,8 @@ static void setup_for_endstop_move() {
}
#endif
- do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
+ // this also updates current_position
+ do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
#if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
if (probe_action & ProbeDeploy) {
@@ -1780,7 +1816,6 @@ static void setup_for_endstop_move() {
/**
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
*/
-
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
if (bed_level[x][y] != 0.0) {
return; // Don't overwrite good values.
@@ -1800,8 +1835,10 @@ static void setup_for_endstop_move() {
bed_level[x][y] = median;
}
- // Fill in the unprobed points (corners of circular print surface)
- // using linear extrapolation, away from the center.
+ /**
+ * Fill in the unprobed points (corners of circular print surface)
+ * using linear extrapolation, away from the center.
+ */
static void extrapolate_unprobed_bed_level() {
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
for (int y = 0; y <= half; y++) {
@@ -1815,7 +1852,9 @@ static void setup_for_endstop_move() {
}
}
- // Print calibration results for plotting or manual frame adjustment.
+ /**
+ * Print calibration results for plotting or manual frame adjustment.
+ */
static void print_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
@@ -1826,7 +1865,9 @@ static void setup_for_endstop_move() {
}
}
- // Reset calibration results to zero.
+ /**
+ * Reset calibration results to zero.
+ */
void reset_bed_level() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
@@ -1846,8 +1887,10 @@ static void setup_for_endstop_move() {
void raise_z_for_servo() {
float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
- // The zprobe_zoffset is negative any switch below the nozzle, so
- // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
+ /**
+ * The zprobe_zoffset is negative any switch below the nozzle, so
+ * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
+ */
z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
}
@@ -1894,7 +1937,8 @@ static void axis_unhomed_error() {
#if Z_RAISE_AFTER_PROBING > 0
raise_z_after_probing(); // raise Z
#endif
- do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
+ // Dock sled a bit closer to ensure proper capturing
+ do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
digitalWrite(SLED_PIN, LOW); // turn off magnet
}
else {
@@ -2190,9 +2234,9 @@ static void homeaxis(AxisEnum axis) {
#endif // FWRETRACT
/**
- *
- * G-Code Handler functions
- *
+ * ***************************************************************************
+ * ***************************** G-CODE HANDLING *****************************
+ * ***************************************************************************
*/
/**
@@ -2383,7 +2427,10 @@ inline void gcode_G28() {
#endif
#endif
- // For mesh bed leveling deactivate the mesh calculations, will be turned on again when homing all axis
+ /**
+ * For mesh bed leveling deactivate the mesh calculations, will be turned
+ * on again when homing all axis
+ */
#if ENABLED(MESH_BED_LEVELING)
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
@@ -2391,13 +2438,19 @@ inline void gcode_G28() {
setup_for_endstop_move();
- set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
+ /**
+ * Directly after a reset this is all 0. Later we get a hint if we have
+ * to raise z or not.
+ */
+ set_destination_to_current();
feedrate = 0.0;
#if ENABLED(DELTA)
- // A delta can only safely home all axis at the same time
- // all axis have to home at the same time
+ /**
+ * A delta can only safely home all axis at the same time
+ * all axis have to home at the same time
+ */
// Pretend the current position is 0,0,0
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
@@ -2462,9 +2515,11 @@ inline void gcode_G28() {
line_to_destination();
st_synchronize();
- // Update the current Z position even if it currently not real from Z-home
- // otherwise each call to line_to_destination() will want to move Z-axis
- // by MIN_Z_HEIGHT_FOR_HOMING.
+ /**
+ * Update the current Z position even if it currently not real from
+ * Z-home otherwise each call to line_to_destination() will want to
+ * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
+ */
current_position[Z_AXIS] = destination[Z_AXIS];
}
#endif
@@ -2581,15 +2636,18 @@ inline void gcode_G28() {
if (home_all_axis) {
- // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
- // No need to move Z any more as this height should already be safe
- // enough to reach Z_SAFE_HOMING XY positions.
- // Just make sure the planner is in sync.
+ /**
+ * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
+ * No need to move Z any more as this height should already be safe
+ * enough to reach Z_SAFE_HOMING XY positions.
+ * Just make sure the planner is in sync.
+ */
sync_plan_position();
- //
- // Set the Z probe (or just the nozzle) destination to the safe homing point
- //
+ /**
+ * Set the Z probe (or just the nozzle) destination to the safe
+ * homing point
+ */
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
@@ -2606,8 +2664,10 @@ inline void gcode_G28() {
line_to_destination();
st_synchronize();
- // Update the current positions for XY, Z is still at least at
- // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
+ /**
+ * Update the current positions for XY, Z is still at least at
+ * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
+ */
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
@@ -2620,8 +2680,11 @@ inline void gcode_G28() {
// Let's see if X and Y are homed
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
- // Make sure the Z probe is within the physical limits
- // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
+ /**
+ * Make sure the Z probe is within the physical limits
+ * NOTE: This doesn't necessarily ensure the Z probe is also
+ * within the bed!
+ */
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
&& cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
@@ -2858,7 +2921,7 @@ inline void gcode_G28() {
case MeshSetZOffset:
if (code_seen('Z')) {
z = code_value();
- }
+ }
else {
SERIAL_PROTOCOLPGM("Z not entered.\n");
return;
@@ -3038,11 +3101,14 @@ inline void gcode_G28() {
float z_offset = zprobe_zoffset;
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
#else // !DELTA
- // solve the plane equation ax + by + d = z
- // A is the matrix with rows [x y 1] for all the probed points
- // B is the vector of the Z positions
- // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
- // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+ /**
+ * solve the plane equation ax + by + d = z
+ * A is the matrix with rows [x y 1] for all the probed points
+ * B is the vector of the Z positions
+ * the normal vector to the plane is formed by the coefficients of the
+ * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
+ * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
+ */
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
@@ -3273,9 +3339,11 @@ inline void gcode_G28() {
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
if (!dryrun) {
- // Correct the Z height difference from Z probe position and nozzle tip position.
- // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
- // When the bed is uneven, this height must be corrected.
+ /**
+ * Correct the Z height difference from Z probe position and nozzle tip position.
+ * The Z height on homing is measured by Z probe, but the Z probe is quite far
+ * from the nozzle. When the bed is uneven, this height must be corrected.
+ */
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
z_tmp = current_position[Z_AXIS],
@@ -3290,24 +3358,31 @@ inline void gcode_G28() {
}
#endif
- apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
-
- // Get the current Z position and send it to the planner.
- //
- // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
- //
- // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
- //
- // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
- //
- // >> Should home_offset[Z_AXIS] be included?
- //
- // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
- // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
- // then perhaps it should not be included here. The purpose of home_offset[] is to
- // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
- // added here, it could be seen as a compensating factor for the Z probe.
- //
+ // Apply the correction sending the Z probe offset
+ apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
+
+ /*
+ * Get the current Z position and send it to the planner.
+ *
+ * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
+ * (most recent plan_set_position/sync_plan_position)
+ *
+ * >> zprobe_zoffset : Z distance from nozzle to Z probe
+ * (set by default, M851, EEPROM, or Menu)
+ *
+ * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
+ * after the last probe
+ *
+ * >> Should home_offset[Z_AXIS] be included?
+ *
+ *
+ * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
+ * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
+ * not actually "homing" Z... then perhaps it should not be included
+ * here. The purpose of home_offset[] is to adjust for inaccurate
+ * endstops, not for reasonably accurate probes. If it were added
+ * here, it could be seen as a compensating factor for the Z probe.
+ */
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
@@ -3697,7 +3772,10 @@ inline void gcode_M42() {
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
- // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
+ /**
+ * This is redundant since the SanityCheck.h already checks for a valid
+ * Z_MIN_PROBE_PIN, but here for clarity.
+ */
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#if !HAS_Z_PROBE
#error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
@@ -3804,17 +3882,20 @@ inline void gcode_M42() {
if (!seen_L) n_legs = 7;
}
- // Now get everything to the specified probe point So we can safely do a probe to
- // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
- // use that as a starting point for each probe.
- //
+ /**
+ * Now get everything to the specified probe point So we can safely do a
+ * probe to get us close to the bed. If the Z-Axis is far from the bed,
+ * we don't want to use that as a starting point for each probe.
+ */
if (verbose_level > 2)
SERIAL_PROTOCOLPGM("Positioning the probe...\n");
#if ENABLED(DELTA)
- reset_bed_level(); // we don't do bed level correction in M48 because we want the raw data when we probe
+ // we don't do bed level correction in M48 because we want the raw data when we probe
+ reset_bed_level();
#else
- plan_bed_level_matrix.set_to_identity(); // we don't do bed level correction in M48 because we wantthe raw data when we probe
+ // we don't do bed level correction in M48 because we want the raw data when we probe
+ plan_bed_level_matrix.set_to_identity();
#endif
if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
@@ -3822,10 +3903,10 @@ inline void gcode_M42() {
do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
- //
- // OK, do the initial probe to get us close to the bed.
- // Then retrace the right amount and use that in subsequent probes
- //
+ /**
+ * OK, do the initial probe to get us close to the bed.
+ * Then retrace the right amount and use that in subsequent probes
+ */
setup_for_endstop_move();
probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
@@ -3862,19 +3943,27 @@ inline void gcode_M42() {
for (uint8_t l = 0; l < n_legs - 1; l++) {
double delta_angle;
+
if (schizoid_flag)
- delta_angle = dir * 2.0 * 72.0; // The points of a 5 point star are 72 degrees apart. We need to
- // skip a point and go to the next one on the star.
+ // The points of a 5 point star are 72 degrees apart. We need to
+ // skip a point and go to the next one on the star.
+ delta_angle = dir * 2.0 * 72.0;
+
else
- delta_angle = dir * (float) random(25, 45); // If we do this line, we are just trying to move further
- // around the circle.
+ // If we do this line, we are just trying to move further
+ // around the circle.
+ delta_angle = dir * (float) random(25, 45);
+
angle += delta_angle;
+
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
+
X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
+
#if DISABLED(DELTA)
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
@@ -3904,10 +3993,13 @@ inline void gcode_M42() {
} // n_legs loop
} // n_legs
- // We don't really have to do this move, but if we don't we can see a funny shift in the Z Height
- // Because the user might not have the Z_RAISE_BEFORE_PROBING height identical to the
- // Z_RAISE_BETWEEN_PROBING height. This gets us back to the probe location at the same height that
- // we have been running around the circle at.
+ /**
+ * We don't really have to do this move, but if we don't we can see a
+ * funny shift in the Z Height because the user might not have the
+ * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
+ * height. This gets us back to the probe location at the same height that
+ * we have been running around the circle at.
+ */
do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
if (deploy_probe_for_each_reading)
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
@@ -3917,17 +4009,17 @@ inline void gcode_M42() {
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
}
- //
- // Get the current mean for the data points we have so far
- //
+ /**
+ * Get the current mean for the data points we have so far
+ */
sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
- //
- // Now, use that mean to calculate the standard deviation for the
- // data points we have so far
- //
+ /**
+ * Now, use that mean to calculate the standard deviation for the
+ * data points we have so far
+ */
sum = 0.0;
for (uint8_t j = 0; j <= n; j++) {
float ss = sample_set[j] - mean;
@@ -4367,9 +4459,11 @@ inline void gcode_M140() {
inline void gcode_M80() {
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
- // If you have a switch on suicide pin, this is useful
- // if you want to start another print with suicide feature after
- // a print without suicide...
+ /**
+ * If you have a switch on suicide pin, this is useful
+ * if you want to start another print with suicide feature after
+ * a print without suicide...
+ */
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
@@ -6973,31 +7067,32 @@ void plan_arc(
float linear_per_segment = linear_travel / segments;
float extruder_per_segment = extruder_travel / segments;
- /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
- and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
- r_T = [cos(phi) -sin(phi);
- sin(phi) cos(phi] * r ;
-
- For arc generation, the center of the circle is the axis of rotation and the radius vector is
- defined from the circle center to the initial position. Each line segment is formed by successive
- vector rotations. This requires only two cos() and sin() computations to form the rotation
- matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
- all double numbers are single precision on the Arduino. (True double precision will not have
- round off issues for CNC applications.) Single precision error can accumulate to be greater than
- tool precision in some cases. Therefore, arc path correction is implemented.
-
- Small angle approximation may be used to reduce computation overhead further. This approximation
- holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
- theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
- to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
- numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
- issue for CNC machines with the single precision Arduino calculations.
-
- This approximation also allows plan_arc to immediately insert a line segment into the planner
- without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
- a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
- This is important when there are successive arc motions.
- */
+ /**
+ * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+ * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+ * r_T = [cos(phi) -sin(phi);
+ * sin(phi) cos(phi] * r ;
+ *
+ * For arc generation, the center of the circle is the axis of rotation and the radius vector is
+ * defined from the circle center to the initial position. Each line segment is formed by successive
+ * vector rotations. This requires only two cos() and sin() computations to form the rotation
+ * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+ * all double numbers are single precision on the Arduino. (True double precision will not have
+ * round off issues for CNC applications.) Single precision error can accumulate to be greater than
+ * tool precision in some cases. Therefore, arc path correction is implemented.
+ *
+ * Small angle approximation may be used to reduce computation overhead further. This approximation
+ * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
+ * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
+ * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
+ * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
+ * issue for CNC machines with the single precision Arduino calculations.
+ *
+ * This approximation also allows plan_arc to immediately insert a line segment into the planner
+ * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
+ * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
+ * This is important when there are successive arc motions.
+ */
// Vector rotation matrix values
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
--
GitLab