diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 13e55523653e348d215a7ce54558cdc47821cb1b..7a1afa35176f5e32040e22eca0f9d4176b27bd0d 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -171,7 +171,7 @@ void manage_inactivity(bool ignore_stepper_queue=false); #endif -enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3}; +enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; void FlushSerialRequestResend(); diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index c8942251e4b6cc443a0bb7607c2e9be3caf13655..5d9fba948dddd9ccc3a7ea205d81842fe47a6e7f 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -715,11 +715,21 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; } - float delta_mm[4]; +/* This part of the code calculates the total length of the movement. +For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. +But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS +and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. +So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. +Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. +*/ #ifndef COREXY + float delta_mm[4]; delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; #else + float delta_mm[6]; + delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; + delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS]; delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS]; #endif @@ -731,7 +741,11 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi } else { - block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); + #ifndef COREXY + block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); + #else + block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])); + #endif } float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides