diff --git a/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp b/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp
index 607d3978e798c9f4828c4d6be934e0b7f70a24b9..99fcb65462e74d24770946a84c1262f544f96205 100644
--- a/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp
+++ b/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp
@@ -29,38 +29,49 @@
/**
* This is a hybrid system.
*
- * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins. This keeps
+ * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins. This keeps
* the pulse width jitter to under a microsecond.
*
* For all other pins the PWM1 module is used to generate interrupts. The ISR
* routine does the actual setting/clearing of pins. The upside is that any pin can
* have a PWM channel assigned to it. The downside is that there is more pulse width
* jitter. The jitter depends on what else is happening in the system and what ISRs
- * prempt the PWM ISR. Writing to the SD card can add 20 microseconds to the pulse
- * width.
+ * pre-empt the PWM ISR.
*/
/**
- * The data structures are setup to minimize the computation done by the ISR which
- * minimizes ISR execution time. Execution times are 2.2 - 3.7 microseconds.
+ * The data structures are set up to minimize the computation done by the ISR which
+ * minimizes ISR execution time. Execution times are 2-4µs except when updating to
+ * a new value when they are 19µs.
*
- * Two tables are used. active_table is used by the ISR. Changes to the table are
- * are done by copying the active_table into the work_table, updating the work_table
- * and then swapping the two tables. Swapping is done by manipulating pointers.
+ * Two tables are used. One table contains the data used by the ISR to update/control
+ * the PWM pins. The other is used as an aid when rebuilding the ISR table.
*
- * Immediately after the swap the ISR uses the work_table until the start of the
- * next 20mS cycle. During this transition the "work_table" is actually the table
- * that was being used before the swap. The "active_table" contains the data that
- * will start being used at the start of the next 20mS period. This keeps the pins
- * well behaved during the transition.
+ * The LPC1768_PWM_attach_pin routine disables the ISR and then adds the new info to
+ * ISR table. It can update the table directly because none of its changes affect
+ * what the ISR does.
*
- * The ISR's priority is set to the maximum otherwise other ISRs can cause considerable
- * jitter in the PWM high time.
+ * LPC1768_PWM_detach_pin routine disables the ISR, disables the pin immediately if
+ * it's a directly controlled pin and updates the helper table. It then flags the
+ * ISR that the ISR table needs to be rebuilt.
+ *
+ * LPC1768_PWM_write routine disables the ISR and updates the helper table. It then
+ * flags the ISR that the ISR table needs to be rebuilt.
+ *
+ * The ISR's priority is set to less than the stepper ISR otherwise it could cause jitter
+ * in the step pulses.
*
* See the end of this file for details on the hardware/firmware interaction
*/
#ifdef TARGET_LPC1768
+
+#include "../../inc/MarlinConfig.h"
+
+// #include <math.h>
+// #include <stdio.h>
+// #include <stdlib.h>
+
#include <lpc17xx_pinsel.h>
#include "LPC1768_PWM.h"
#include "arduino.h"
@@ -68,48 +79,68 @@
#define NUM_PWMS 6
typedef struct { // holds all data needed to control/init one of the PWM channels
- uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
- pin_t pin;
- uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER
- volatile uint32_t* set_register;
- volatile uint32_t* clr_register;
- uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
- uint32_t microseconds; // value written to MR register
- uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
- uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
- bool PWM_flag; // 0 - USED BY sERVO, 1 - USED BY ANALOGWRITE
- uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
- bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
- uint8_t assigned_MR; // Which MR (1-6) is used by this logical channel
- uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
- uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
+ uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
+ pin_t pin;
+ uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER
+ volatile uint32_t* set_register;
+ volatile uint32_t* clr_register;
+ uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
+ uint32_t microseconds; // value written to MR register
+ uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
+ uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
+ bool PWM_flag; // 0 - USED BY hardware PWM, 1 - USED BY ANALOGWRITE
+ uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
+ bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
+ uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
+ volatile uint32_t* PINSEL_reg; // PINSEL register
+ uint32_t PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control
} PWM_map;
-#define MICRO_MAX 0xffffffff
+#define MICRO_MAX 0xFFFFFFFF
-#define PWM_MAP_INIT_ROW {0, P_NC, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0}
-#define PWM_MAP_INIT {PWM_MAP_INIT_ROW,\
- PWM_MAP_INIT_ROW,\
- PWM_MAP_INIT_ROW,\
- PWM_MAP_INIT_ROW,\
- PWM_MAP_INIT_ROW,\
- PWM_MAP_INIT_ROW,\
+#define PWM_MAP_INIT_ROW { 0, 0x7FFF, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0 }
+#define PWM_MAP_INIT { PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \
+ PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \
};
-PWM_map PWM1_map_A[NUM_PWMS] = PWM_MAP_INIT;
-PWM_map PWM1_map_B[NUM_PWMS] = PWM_MAP_INIT;
+PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT;
-PWM_map *active_table = PWM1_map_A;
-PWM_map *work_table = PWM1_map_B;
-PWM_map *ISR_table;
+#define IR_BIT(p) ((p) >= 0 && (p) <= 3 ? (p) : p + 4 )
+#define PIN_IS_INVERTED(p) 0 // placeholder in case inverting PWM output is offered
-#define IR_BIT(p) (p >= 0 && p <= 3 ? p : p + 4 )
-#define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < 6 ; i++) work_table[i] = active_table[i]
-#define PIN_IS_INVERTED(p) 0 // place holder in case inverting PWM output is offered
+#define P1_18_PWM_channel 1 // servo 3
+#define P1_20_PWM_channel 2 // servo 0
+#define P1_21_PWM_channel 3 // servo 1
+#define P2_4_PWM_channel 5 // D9
+#define P2_5_PWM_channel 6 // D10
+
+// used to keep track of which Match Registers have been used and if they will be used by the
+// PWM1 module to directly control the pin or will be used to generate an interrupt
+typedef struct { // status of PWM1 channel
+ uint8_t map_used; // 0 - this MR register not used/assigned
+ uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM
+ pin_t map_PWM_PIN; // pin for this PwM1 controlled pin / port
+ volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel
+ uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
+ // 0 - don't switch to PWM1 direct control
+ volatile uint32_t* PINSEL_reg; // PINSEL register
+ uint32_t PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control
+} MR_map;
+
+MR_map map_MR[NUM_PWMS];
+
+void LPC1768_PWM_update_map_MR(void) {
+ map_MR[0] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_18_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0, 0 };
+ map_MR[1] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_20_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0, 0 };
+ map_MR[2] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_21_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0, 0 };
+ map_MR[3] = { 0, 0, P_NC, &LPC_PWM1->MR4, 0, 0, 0 };
+ map_MR[4] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_4_PWM_channel) ? 1 : 0), P2_4, &LPC_PWM1->MR5, 0, 0, 0 };
+ map_MR[5] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_5_PWM_channel) ? 1 : 0), P2_5, &LPC_PWM1->MR6, 0, 0, 0 };
+}
/**
* Prescale register and MR0 register values
@@ -144,317 +175,322 @@ PWM_map *ISR_table;
*
*/
+bool ISR_table_update = false; // flag to tell the ISR that the tables need to be updated & swapped
void LPC1768_PWM_init(void) {
- #define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable
- #define SBIT_CNTRST 1 // reset counters to known state
- #define SBIT_PWMEN 3 // 1 - PWM, 0 - timer
- #define SBIT_PWMMR0R 1
- #define PCPWM1 6
+ #define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable
+ #define SBIT_CNTRST 1 // reset counters to known state
+ #define SBIT_PWMEN 3 // 1 - PWM, 0 - timer
+ #define SBIT_PWMMR0R 1
+ #define PCPWM1 6
#define PCLK_PWM1 12
- LPC_SC->PCONP |= (1 << PCPWM1); // enable PWM1 controller (enabled on power up)
+ SBI(LPC_SC->PCONP, PCPWM1); // Enable PWM1 controller (enabled on power up)
LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1);
LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1);
- LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS
- // MR0 must be set before TCR enables the PWM
- LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST)| _BV(SBIT_PWMEN);; // enable counters, reset counters, set mode to PWM
- LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // take counters out of reset
- LPC_PWM1->PR = LPC_PWM1_PR;
- LPC_PWM1->MCR = (_BV(SBIT_PWMMR0R) | _BV(0)); // Reset TC if it matches MR0, disable all interrupts except for MR0
- LPC_PWM1->CTCR = 0; // disable counter mode (enable PWM mode)
-
- LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
- // Set all PWMs to single edge
- LPC_PWM1->PCR = 0; // single edge mode for all channels, PWM1 control of outputs off
-
- NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler
- // NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module
- NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // minimizes jitter due to higher priority ISRs
+
+ LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS
+ // MR0 must be set before TCR enables the PWM
+ LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST) | _BV(SBIT_PWMEN); // Enable counters, reset counters, set mode to PWM
+ LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // Take counters out of reset
+ LPC_PWM1->PR = LPC_PWM1_PR;
+ LPC_PWM1->MCR = _BV(SBIT_PWMMR0R) | _BV(0); // Reset TC if it matches MR0, disable all interrupts except for MR0
+ LPC_PWM1->CTCR = 0; // Disable counter mode (enable PWM mode)
+ LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
+ LPC_PWM1->PCR = 0; // Single edge mode for all channels, PWM1 control of outputs off
+
+ NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler
+ NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // Normal priority for PWM module
+ //NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // Minimizes jitter due to higher priority ISRs
}
-bool PWM_table_swap = false; // flag to tell the ISR that the tables have been swapped
-bool PWM_MR0_wait = false; // flag to ensure don't delay MR0 interrupt
+bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - MR0_MARGIN) */, uint8_t servo_index /* = 0xff */) {
+ pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); // Sometimes the upper byte is garbled
-bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - MR0_MARGIN) */, uint8_t servo_index /* = 0xff */) {
- while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
- COPY_ACTIVE_TABLE; // copy active table into work table
+ NVIC_DisableIRQ(PWM1_IRQn); // make it safe to update the active table
+ // OK to update the active table because the
+ // ISR doesn't use any of the changed items
uint8_t slot = 0;
for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table
- if (work_table[i].pin == pin) return 1;
+ if (ISR_table[i].pin == pin) {
+ NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
+ return 1;
+ }
for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++) // find empty slot
- if ( !(work_table[i - 1].set_register)) slot = i; // any item that can't be zero when active or just attached is OK
+ if ( !(ISR_table[i - 1].set_register)) { slot = i; break; } // any item that can't be zero when active or just attached is OK
if (!slot) return 0;
slot--; // turn it into array index
- work_table[slot].pin = pin; // init slot
- work_table[slot].PWM_mask = 0; // real value set by PWM_write
- work_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
- work_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
- work_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin));
- work_table[slot].microseconds = MICRO_MAX;
- work_table[slot].min = min;
- work_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
- work_table[slot].servo_index = servo_index;
- work_table[slot].active_flag = false;
-
- //swap tables
- PWM_MR0_wait = true;
- while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
+ ISR_table[slot].pin = pin; // init slot
+ ISR_table[slot].PWM_mask = 0; // real value set by PWM_write
+ ISR_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
+ ISR_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
+ ISR_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin));
+ ISR_table[slot].microseconds = MICRO_MAX;
+ ISR_table[slot].min = min;
+ ISR_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
+ ISR_table[slot].servo_index = servo_index;
+ ISR_table[slot].active_flag = false;
- NVIC_DisableIRQ(PWM1_IRQn);
- PWM_map *pointer_swap = active_table;
- active_table = work_table;
- work_table = pointer_swap;
- PWM_table_swap = true; // tell the ISR that the tables have been swapped
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
-#define pin_11_PWM_channel 2
-#define pin_6_PWM_channel 3
-#define pin_4_PWM_channel 1
-// used to keep track of which Match Registers have been used and if they will be used by the
-// PWM1 module to directly control the pin or will be used to generate an interrupt
-typedef struct { // status of PWM1 channel
- uint8_t map_used; // 0 - this MR register not used/assigned
- uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM
- pin_t map_PWM_PIN; // pin for this PwM1 controlled pin / port
- volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel
- uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
- uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
-} MR_map;
+bool LPC1768_PWM_detach_pin(pin_t pin) {
-MR_map map_MR[NUM_PWMS];
+ pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
-void LPC1768_PWM_update_map_MR(void) {
- map_MR[0] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_4_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0};
- map_MR[1] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_11_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0};
- map_MR[2] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_6_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0};
- map_MR[3] = {0, 0, P_NC, &LPC_PWM1->MR4, 0, 0};
- map_MR[4] = {0, 0, P_NC, &LPC_PWM1->MR5, 0, 0};
- map_MR[5] = {0, 0, P_NC, &LPC_PWM1->MR6, 0, 0};
-}
+ NVIC_EnableIRQ(PWM1_IRQn); // ?? fixes compiler problem?? ISR won't start
+ // unless put in an extra "enable"
+ NVIC_DisableIRQ(PWM1_IRQn);
+ uint8_t slot = 0xFF;
+ for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
+ if (ISR_table[i].pin == pin) { slot = i; break; }
+ if (slot == 0xFF) return false; // return error if pin not found
-uint32_t LPC1768_PWM_interrupt_mask = 1;
+ LPC1768_PWM_update_map_MR();
-void LPC1768_PWM_update(void) {
- for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds
- bool didSwap = false;
- PWM_map temp;
- for (uint16_t j = 0; j < i; ++j) {
- if (work_table[j].microseconds > work_table[j + 1].microseconds) {
- temp = work_table[j + 1];
- work_table[j + 1] = work_table[j];
- work_table[j] = temp;
- didSwap = true;
- }
- }
- if (!didSwap) break;
+ // OK to make these changes before the MR0 interrupt
+ switch(pin) {
+ case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
+ LPC_PWM1->PCR &= ~(_BV(8 + P1_20_PWM_channel)); // disable PWM1 module control of this pin
+ map_MR[P1_20_PWM_channel - 1].PCR_bit = 0;
+ LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O
+ map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0;
+ map_MR[P1_20_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
+ break;
+ case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
+ LPC_PWM1->PCR &= ~(_BV(8 + P1_21_PWM_channel)); // disable PWM1 module control of this pin
+ map_MR[P1_21_PWM_channel - 1].PCR_bit = 0;
+ LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O
+ map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0;
+ map_MR[P1_21_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
+ break;
+ case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
+ LPC_PWM1->PCR &= ~(_BV(8 + P1_18_PWM_channel)); // disable PWM1 module control of this pin
+ map_MR[P1_18_PWM_channel - 1].PCR_bit = 0;
+ LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O
+ map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0;
+ map_MR[P1_18_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
+ break;
+ case P2_4: // D9 FET, PWM1 channel 5 (Pin 9 P2_4 PWM1.5)
+ LPC_PWM1->PCR &= ~(_BV(8 + P2_4_PWM_channel)); // disable PWM1 module control of this pin
+ map_MR[P2_4_PWM_channel - 1].PCR_bit = 0;
+ LPC_PINCON->PINSEL4 &= ~(0x3 << 10); // return pin to general purpose I/O
+ map_MR[P2_4_PWM_channel - 1].PINSEL_bits = 0;
+ map_MR[P2_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
+ break;
+ case P2_5: // D10 FET, PWM1 channel 6 (Pin 10 P2_5 PWM1.6)
+ LPC_PWM1->PCR &= ~(_BV(8 + P2_5_PWM_channel)); // disable PWM1 module control of this pin
+ map_MR[P2_5_PWM_channel - 1].PCR_bit = 0;
+ LPC_PINCON->PINSEL4 &= ~(0x3 << 4); // return pin to general purpose I/O
+ map_MR[P2_5_PWM_channel - 1].PINSEL_bits = 0;
+ map_MR[P2_5_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
+ break;
+ default:
+ break;
}
- LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask
- for (uint8_t i = 0; i < NUM_PWMS; i++) {
- if (work_table[i].active_flag == true) {
- work_table[i].sequence = i + 1;
+ ISR_table[slot] = PWM_MAP_INIT_ROW;
- // first see if there is a PWM1 controlled pin for this entry
- bool found = false;
- for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
- if ( (map_MR[j].map_PWM_PIN == work_table[i].pin) && map_MR[j].map_PWM_INT ) {
- *map_MR[j].MR_register = work_table[i].microseconds; // found one of the PWM pins
- work_table[i].PWM_mask = 0;
- work_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin
- work_table[i].PINSEL3_bits = map_MR[j].PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control} MR_map;
- map_MR[j].map_used = 2;
- work_table[i].assigned_MR = j +1; // only used to help in debugging
- found = true;
- }
- }
+ ISR_table_update = true;
+ NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
- // didn't find a PWM1 pin so get an interrupt
- for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
- if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
- *map_MR[k].MR_register = work_table[i].microseconds; // found one for an interrupt pin
- map_MR[k].map_used = 1;
- LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt
- work_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt
- work_table[i].assigned_MR = k +1; // only used to help in debugging
- found = true;
- }
- }
- }
- else
- work_table[i].sequence = 0;
- }
- LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt
+ return 1;
+}
- // swap tables
- PWM_MR0_wait = true;
- while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
+bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
- NVIC_DisableIRQ(PWM1_IRQn);
- LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
- PWM_map *pointer_swap = active_table;
- active_table = work_table;
- work_table = pointer_swap;
- PWM_table_swap = true; // tell the ISR that the tables have been swapped
- NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
-}
+ pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
+ NVIC_DisableIRQ(PWM1_IRQn);
-bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
- while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
- COPY_ACTIVE_TABLE; // copy active table into work table
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
- if (work_table[i].pin == pin) slot = i;
+ if (ISR_table[i].pin == pin) { slot = i; break; }
if (slot == 0xFF) return false; // return error if pin not found
LPC1768_PWM_update_map_MR();
switch(pin) {
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
- map_MR[pin_11_PWM_channel - 1].PCR_bit = _BV(8 + pin_11_PWM_channel); // enable PWM1 module control of this pin
- map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
- map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0x2 << 8; // ISR must do this AFTER setting PCR
+ map_MR[P1_20_PWM_channel - 1].PCR_bit = _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin
+ map_MR[P1_20_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
+ map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0x2 << 8; // ISR must do this AFTER setting PCR
break;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
- map_MR[pin_6_PWM_channel - 1].PCR_bit = _BV(8 + pin_6_PWM_channel); // enable PWM1 module control of this pin
- map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
- map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0x2 << 10; // ISR must do this AFTER setting PCR
+ map_MR[P1_21_PWM_channel - 1].PCR_bit = _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin
+ map_MR[P1_21_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
+ map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0x2 << 10; // ISR must do this AFTER setting PCR
break;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
- map_MR[pin_4_PWM_channel - 1].PCR_bit = _BV(8 + pin_4_PWM_channel); // enable PWM1 module control of this pin
- map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
- map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0x2 << 4; // ISR must do this AFTER setting PCR
+ map_MR[P1_18_PWM_channel - 1].PCR_bit = _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin
+ map_MR[P1_18_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
+ map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0x2 << 4; // ISR must do this AFTER setting PCR
+ break;
+ case P2_4: // D9 FET, PWM1 channel 5 (Pin 9 P2_4 PWM1.5)
+ map_MR[P2_4_PWM_channel - 1].PCR_bit = _BV(8 + P2_4_PWM_channel); // enable PWM1 module control of this pin
+ map_MR[P2_4_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4;
+ map_MR[P2_4_PWM_channel - 1].PINSEL_bits = 0x1 << 8; // ISR must do this AFTER setting PCR
+ break;
+ case P2_5: // D10 FET, PWM1 channel 6 (Pin 10 P2_5 PWM1.6)
+ map_MR[P2_5_PWM_channel - 1].PCR_bit = _BV(8 + P2_5_PWM_channel); // enable PWM1 module control of this pin
+ map_MR[P2_5_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4;
+ map_MR[P2_5_PWM_channel - 1].PINSEL_bits = 0x1 << 10; // ISR must do this AFTER setting PCR
break;
- default: // ISR pins
- pinMode(pin, OUTPUT); // set pin to output but don't write anything in case it's already in use
+ default: // ISR pins
+ pinMode(pin, OUTPUT); // set pin to output
break;
}
- work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);
- work_table[slot].active_flag = true;
+ ISR_table[slot].microseconds = MAX(MIN(value, ISR_table[slot].max), ISR_table[slot].min);
+ ISR_table[slot].active_flag = 1;
- LPC1768_PWM_update();
+ ISR_table_update = true;
+
+ NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
-bool LPC1768_PWM_detach_pin(pin_t pin) {
- while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
- COPY_ACTIVE_TABLE; // copy active table into work table
- uint8_t slot = 0xFF;
- for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
- if (work_table[i].pin == pin) slot = i;
- if (slot == 0xFF) return false; // return error if pin not found
+uint32_t LPC1768_PWM_interrupt_mask = 1;
- LPC1768_PWM_update_map_MR();
- // OK to make these changes before the MR0 interrupt
- switch(pin) {
- case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
- LPC_PWM1->PCR &= ~(_BV(8 + pin_11_PWM_channel)); // disable PWM1 module control of this pin
- map_MR[pin_11_PWM_channel - 1].PCR_bit = 0;
- LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O
- map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0;
- map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
- break;
- case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
- LPC_PWM1->PCR &= ~(_BV(8 + pin_6_PWM_channel)); // disable PWM1 module control of this pin
- map_MR[pin_6_PWM_channel - 1].PCR_bit = 0;
- LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O
- map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0;
- map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
- break;
- case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
- LPC_PWM1->PCR &= ~(_BV(8 + pin_4_PWM_channel)); // disable PWM1 module control of this pin
- map_MR[pin_4_PWM_channel - 1].PCR_bit = 0;
- LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O
- map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0;
- map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
- break;
- default:
- break;
+void LPC1768_PWM_update(void) { // only called by the ISR
+ LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask
+ // first setup directly controlled PWM pin slots
+
+ bool found;
+ for (uint8_t i = 0; i < NUM_PWMS; i++) {
+ ISR_table[i].PCR_bit = 0; // clear entries
+ ISR_table[i].PINSEL_reg = 0;
+ ISR_table[i].PINSEL_bits = 0;
+ ISR_table[i].PWM_flag = 1; // mark slot as interrupt mode until find differently
+
+ if (ISR_table[i].active_flag) {
+ ISR_table[i].sequence = i + 1;
+
+ // first see if there is a PWM1 controlled pin for this entry
+ found = false;
+ for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
+ if ( (map_MR[j].map_PWM_PIN == ISR_table[i].pin)) {
+ map_MR[j].map_PWM_INT = 1; // flag that it's already setup for direct control
+ ISR_table[i].PWM_mask = 0;
+ ISR_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin
+ ISR_table[i].PINSEL_reg = map_MR[j].PINSEL_reg; // PINSEL register address to set pin mode to PWM1 control} MR_map;
+ ISR_table[i].PINSEL_bits = map_MR[j].PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control} MR_map;
+ map_MR[j].map_used = 2;
+ ISR_table[i].PWM_flag = 0;
+ *map_MR[j].MR_register = ISR_table[i].microseconds;
+ found = true;
+ }
+ }
+ }
+ else
+ ISR_table[i].sequence = 0;
}
- pinMode(pin, INPUT);
+ // next fill in interrupt slots
+ for (uint8_t i = 0; i < NUM_PWMS; i++) {
- work_table[slot] = PWM_MAP_INIT_ROW;
+ if (ISR_table[i].active_flag && ISR_table[i].PWM_flag) {
- LPC1768_PWM_update();
+ // setup interrupt slot
+ found = false;
+ for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
+ if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
+ *map_MR[k].MR_register = ISR_table[i].microseconds; // found one for an interrupt pin
+ map_MR[k].map_used = 1;
+ LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt
+ ISR_table[i].set_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET;
+ ISR_table[i].clr_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR;
+ ISR_table[i].write_mask = LPC_PIN(LPC1768_PIN_PIN(ISR_table[i].pin));
+ ISR_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt
+ ISR_table[i].PWM_flag = 1;
+ found = true;
+ }
+ }
+ }
+ }
- return 1;
+ LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt
+
+ LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
}
bool useable_hardware_PWM(pin_t pin) {
- COPY_ACTIVE_TABLE; // copy active table into work table
+
+ pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
+
+ NVIC_DisableIRQ(PWM1_IRQn);
+
+ bool return_flag = false;
for (uint8_t i = 0; i < NUM_PWMS; i++) // see if it's already setup
- if (work_table[i].pin == pin && work_table[i].sequence) return true;
+ if (ISR_table[i].pin == pin && ISR_table[i].sequence) return_flag = true;
for (uint8_t i = 0; i < NUM_PWMS; i++) // see if there is an empty slot
- if (!work_table[i].sequence) return true;
- return false; // only get here if neither the above are true
+ if (!ISR_table[i].sequence) return_flag = true;
+ NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
+ return return_flag;
}
////////////////////////////////////////////////////////////////////////////////
#define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void)
-
// Both loops could be terminated when the last active channel is found but that would
// result in variations ISR run time which results in variations in pulse width
/**
- * Changes to PINSEL3, PCR and MCR are only done during the MR0 interrupt otherwise
+ * Changes to PINSEL, PCR and MCR are only done during the MR0 interrupt otherwise
* the wrong pin may be toggled or even have the system hang.
*/
HAL_PWM_LPC1768_ISR {
- if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done
- else ISR_table = active_table;
-
- if (LPC_PWM1->IR & 0x1) { // MR0 interrupt
- ISR_table = active_table; // MR0 means new values could have been loaded so set everything
- if (PWM_table_swap) LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
+ if (LPC_PWM1->IR & 0x1) { // MR0 interrupt
+ if (ISR_table_update) { // new values have been loaded so set everything
+ LPC1768_PWM_update(); // update & swap table
+ LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
+ }
for (uint8_t i = 0; i < NUM_PWMS; i++) {
- if(ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) ||
- (ISR_table[i].pin == P1_21) ||
- (ISR_table[i].pin == P1_18)))
+ if (ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) ||
+ (ISR_table[i].pin == P1_21) ||
+ (ISR_table[i].pin == P1_18) ||
+ (ISR_table[i].pin == P2_4) ||
+ (ISR_table[i].pin == P2_5))
+ ) {
*ISR_table[i].set_register = ISR_table[i].write_mask; // set pins for all enabled interrupt channels active
- if (PWM_table_swap && ISR_table[i].PCR_bit) {
- LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin
- LPC_PINCON->PINSEL3 |= ISR_table[i].PINSEL3_bits; // set pin mode to PWM1 control - must be done after PCR
+ }
+ if (ISR_table_update && ISR_table[i].PCR_bit) {
+ LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin
+ *ISR_table[i].PINSEL_reg |= ISR_table[i].PINSEL_bits; // set pin mode to PWM1 control - must be done after PCR
}
}
- PWM_table_swap = false;
- PWM_MR0_wait = false;
+ ISR_table_update = false;
LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit
}
else {
- for (uint8_t i = 0; i < NUM_PWMS ; i++)
- if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask) ){
+ for (uint8_t i = 0; i < NUM_PWMS; i++)
+ if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask)) {
LPC_PWM1->IR = ISR_table[i].PWM_mask; // clear the interrupt flag bits for expected interrupts
*ISR_table[i].clr_register = ISR_table[i].write_mask; // set channel to inactive
}
}
LPC_PWM1->IR = 0x70F; // guarantees all interrupt flags are cleared which, if there is an unexpected
- // PWM interrupt, will keep the ISR from hanging which will crash the controller
-
-return;
+ // PWM interrupt, will keep the ISR from hanging which will crash the controller
}
+
#endif
/////////////////////////////////////////////////////////////////
@@ -466,44 +502,26 @@ return;
* interrupt. The only exception is detaching pins. It doesn't matter when they go
* tristate.
*
- * The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled or
- * delayed.
+ * The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled. It
+ * can be delayed by higher priority interrupts. Actions on directly controlled pins are not delayed
+ * by other interrupts
*
- * The PWM_table_swap flag is set when the firmware has swapped in an updated table. It is
- * cleared by the ISR during the MR0 interrupt as it completes the swap and accompanying updates.
- * It serves two purposes:
- * 1) Tells the ISR that the tables have been swapped
- * 2) Keeps the firmware from starting a new update until the previous one has been completed.
- *
- * The PWM_MR0_wait flag is set when the firmware is ready to swap in an updated table and cleared by
- * the ISR during the MR0 interrupt. It is used to avoid delaying the MR0 interrupt when swapping in
- * an updated table. This avoids glitches in pulse width and/or repetition rate.
+ * The ISR_table_update flag is set when the ISR table needs to be rebuilt. It is
+ * cleared by the ISR during the MR0 interrupt after it rebuilds the ISR table.
*
* The sequence of events during a write to a PWM channel is:
- * 1) Waits until PWM_table_swap flag is false before starting
- * 2) Copies the active table into the work table
- * 3) Updates the work table
- * NOTES - MR1-MR6 are updated at this time. The updates aren't put into use until the first
+ * 1) Attach routine puts the pin number in the ISR table but doesn't mark it active.
+ * 2) Write routine marks the pin as active, updates the helper table and flags the ISR that the
+ * ISR table needs to be rebuilt.
+ * 3) On the MR0 interrupt the ISR:
+ * a. Rebuilds the ISR table if needed.
+ * MR1-MR6 are updated at this time. The updates aren't put into use until the first
* MR0 after the LER register has been written. The LER register is written during the
- * table swap process.
- * - The MCR mask is created at this time. It is not used until the ISR writes the MCR
- * during the MR0 interrupt in the table swap process.
- * 4) Sets the PWM_MR0_wait flag
- * 5) ISR clears the PWM_MR0_wait flag during the next MR0 interrupt
- * 6) Once the PWM_MR0_wait flag is cleared then the firmware:
- * disables the ISR interrupt
- * swaps the pointers to the tables
- * writes to the LER register
- * sets the PWM_table_swap flag active
- * re-enables the ISR
- * 7) On the next interrupt the ISR changes its pointer to the work table which is now the old,
- * unmodified, active table.
- * 8) On the next MR0 interrupt the ISR:
- * switches over to the active table
- * clears the PWM_table_swap and PWM_MR0_wait flags
- * updates the MCR register with the possibly new interrupt sources/assignments
- * writes to the PCR register to enable the direct control of the Servo 0, 1 & 3 pins by the PWM1 module
- * sets the PINSEL3 register to function/mode 0x2 for the Servo 0, 1 & 3 pins
- * NOTE - PCR must be set before PINSEL
- * sets the pins controlled by the ISR to their active states
+ * table rebuild process. The result is new timing takes 20-40 mS to be implemented.
+ * b. Sets the interrupt controlled pin(s) to their active state
+ * c. Writes to the PCR register to enable the directly controlled pins
+ * d. Sets the PINSEL register to the function/mode for the directly controlled pins
+ *
+ * 4) For each interrupt controlled pin there is another ISR call. During this call the pin is set
+ * to its inactive state. The call is initiated when a MR1-MR6 reg times out.
*/
diff --git a/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.h b/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.h
index 08fe83ee7b8e0fd60b63fc36f251638d3411f1ca..177a05308830dd2859244c20b6e385176cdb9438 100644
--- a/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.h
+++ b/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.h
@@ -69,9 +69,7 @@
#define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up
void LPC1768_PWM_init(void);
-bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff);
-void LPC1768_PWM_update_map_MR(void);
-void LPC1768_PWM_update(void);
+bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min=1, uint32_t max=(LPC_PWM1_MR0 - (MR0_MARGIN)), uint8_t servo_index=0xFF);
bool LPC1768_PWM_write(pin_t pin, uint32_t value);
bool LPC1768_PWM_detach_pin(pin_t pin);
bool useable_hardware_PWM(pin_t pin);
diff --git a/Marlin/src/HAL/HAL_LPC1768/fastio.h b/Marlin/src/HAL/HAL_LPC1768/fastio.h
index c2d2549944f431c90a052e883e73c2c0fa4069ad..c459823cdbed21fb2a04be2e980d5f99a66103d4 100644
--- a/Marlin/src/HAL/HAL_LPC1768/fastio.h
+++ b/Marlin/src/HAL/HAL_LPC1768/fastio.h
@@ -39,7 +39,7 @@
#include "arduino.h"
#include "pinmapping.h"
-bool useable_hardware_PWM(uint8_t pin);
+bool useable_hardware_PWM(pin_t pin);
#define USEABLE_HARDWARE_PWM(pin) useable_hardware_PWM(pin)
#define LPC_PORT_OFFSET (0x0020)
diff --git a/Marlin/src/Marlin.cpp b/Marlin/src/Marlin.cpp
index 5b5907f85fe3022be2b291da97043e4656c267c2..3f98c565b3005d38b40fd55cbba7d2233cb09c03 100644
--- a/Marlin/src/Marlin.cpp
+++ b/Marlin/src/Marlin.cpp
@@ -522,7 +522,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
tmc2130_checkOverTemp();
#endif
- planner.check_axes_activity();
+ // Limit check_axes_activity frequency to 10Hz
+ static millis_t next_check_axes_ms = 0;
+ if (ELAPSED(ms, next_check_axes_ms)) {
+ planner.check_axes_activity();
+ next_check_axes_ms = ms + 100UL;
+ }
}
/**
diff --git a/Marlin/src/gcode/control/M42.cpp b/Marlin/src/gcode/control/M42.cpp
index af5886b011361875ded53608b3e7d654a8402c45..6a01596767b166064a786783e15f4c29507f71c3 100644
--- a/Marlin/src/gcode/control/M42.cpp
+++ b/Marlin/src/gcode/control/M42.cpp
@@ -28,6 +28,11 @@
* M42: Change pin status via GCode
*
* P<pin> Pin number (LED if omitted)
+ * For LPC1768 use M42 P1.20 S255 if wanting to set P1_20 to logic 1
+ * NOTE - Repetier Host truncates trailing zeros on a decimal when
+ * sending commands so typing M42 P1.20 S255 results in
+ * M42 P1.2 S255 being sent. Pronterface doesn't have this issue.
+ *
* S<byte> Pin status from 0 - 255
*/
void GcodeSuite::M42() {
diff --git a/Marlin/src/module/temperature.cpp b/Marlin/src/module/temperature.cpp
index 80e3a4447f983f1468d493e175771c4a9bee2a39..98319fc7759166e22fe7437b81a1949c7aa427c3 100644
--- a/Marlin/src/module/temperature.cpp
+++ b/Marlin/src/module/temperature.cpp
@@ -1271,57 +1271,38 @@ void Temperature::init() {
#if ENABLED(FAST_PWM_FAN)
- void Temperature::setPwmFrequency(const uint8_t pin, int val) {
- val &= 0x07;
- switch (digitalPinToTimer(pin)) {
- #ifdef TCCR0A
- #if !AVR_AT90USB1286_FAMILY
- case TIMER0A:
+ void Temperature::setPwmFrequency(const pin_t pin, int val) {
+ #ifdef ARDUINO
+ val &= 0x07;
+ switch (digitalPinToTimer(pin)) {
+ #ifdef TCCR0A
+ #if !AVR_AT90USB1286_FAMILY
+ case TIMER0A:
+ #endif
+ case TIMER0B: //_SET_CS(0, val);
+ break;
#endif
- case TIMER0B:
- //_SET_CS(0, val);
- break;
- #endif
- #ifdef TCCR1A
- case TIMER1A:
- case TIMER1B:
- //_SET_CS(1, val);
- break;
- #endif
- #ifdef TCCR2
- case TIMER2:
- case TIMER2:
- _SET_CS(2, val);
- break;
- #endif
- #ifdef TCCR2A
- case TIMER2A:
- case TIMER2B:
- _SET_CS(2, val);
- break;
- #endif
- #ifdef TCCR3A
- case TIMER3A:
- case TIMER3B:
- case TIMER3C:
- _SET_CS(3, val);
- break;
- #endif
- #ifdef TCCR4A
- case TIMER4A:
- case TIMER4B:
- case TIMER4C:
- _SET_CS(4, val);
- break;
- #endif
- #ifdef TCCR5A
- case TIMER5A:
- case TIMER5B:
- case TIMER5C:
- _SET_CS(5, val);
- break;
- #endif
- }
+ #ifdef TCCR1A
+ case TIMER1A: case TIMER1B: //_SET_CS(1, val);
+ break;
+ #endif
+ #ifdef TCCR2
+ case TIMER2: case TIMER2: _SET_CS(2, val); break;
+ #endif
+ #ifdef TCCR2A
+ case TIMER2A: case TIMER2B: _SET_CS(2, val); break;
+ #endif
+ #ifdef TCCR3A
+ case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
+ #endif
+ #ifdef TCCR4A
+ case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
+ #endif
+ #ifdef TCCR5A
+ case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
+ #endif
+ }
+ #endif
}
#endif // FAST_PWM_FAN
@@ -1332,7 +1313,7 @@ void Temperature::init() {
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
- void Temperature::start_watching_heater(uint8_t e) {
+ void Temperature::start_watching_heater(const uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
diff --git a/Marlin/src/module/temperature.h b/Marlin/src/module/temperature.h
index 4fad317597207a81d073dab95de8cc6db42e7f00..3b419f2a5968387a07343347ed08f8b3e7666edb 100644
--- a/Marlin/src/module/temperature.h
+++ b/Marlin/src/module/temperature.h
@@ -361,14 +361,14 @@ class Temperature {
static int16_t degTargetBed() { return target_temperature_bed; }
#if WATCH_HOTENDS
- static void start_watching_heater(uint8_t e = 0);
+ static void start_watching_heater(const uint8_t e = 0);
#endif
#if WATCH_THE_BED
static void start_watching_bed();
#endif
- static void setTargetHotend(const int16_t celsius, uint8_t e) {
+ static void setTargetHotend(const int16_t celsius, const uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif