diff --git a/Marlin/Conditionals_post.h b/Marlin/Conditionals_post.h
index b189af507cf0736dc58f3fe7bd8d71ca07ea599d..ca36789960c5bc1c45cc9705d48e2eb1ba7354bc 100644
--- a/Marlin/Conditionals_post.h
+++ b/Marlin/Conditionals_post.h
@@ -522,6 +522,9 @@
 
   #define HAS_THERMALLY_PROTECTED_BED (HAS_TEMP_BED && HAS_HEATER_BED && ENABLED(THERMAL_PROTECTION_BED))
 
+  #define WATCH_HOTENDS (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0)
+  #define WATCH_THE_BED (HAS_THERMALLY_PROTECTED_BED && WATCH_BED_TEMP_PERIOD > 0)
+
   /**
    * This setting is also used by M109 when trying to calculate
    * a ballpark safe margin to prevent wait-forever situation.
diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp
index 3d877cc8d02a16b0f0c3d10ef83f787c41b35aa8..40bd33f5524cd4e10f198f6332024ad09a564773 100644
--- a/Marlin/UBL_G29.cpp
+++ b/Marlin/UBL_G29.cpp
@@ -1,1436 +1,1436 @@
-/**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program.  If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
-#include "MarlinConfig.h"
-
-#if ENABLED(AUTO_BED_LEVELING_UBL)
-  //#include "vector_3.h"
-  //#include "qr_solve.h"
-
-  #include "UBL.h"
-  #include "Marlin.h"
-  #include "hex_print_routines.h"
-  #include "configuration_store.h"
-  #include "planner.h"
-  #include "ultralcd.h"
-
-  #include <math.h>
-
-  void lcd_babystep_z();
-  void lcd_return_to_status();
-  bool lcd_clicked();
-  void lcd_implementation_clear();
-  void lcd_mesh_edit_setup(float initial);
-  float lcd_mesh_edit();
-  void lcd_z_offset_edit_setup(float);
-  float lcd_z_offset_edit();
-  extern float meshedit_done;
-  extern long babysteps_done;
-  extern float code_value_float();
-  extern bool code_value_bool();
-  extern bool code_has_value();
-  extern float probe_pt(float x, float y, bool, int);
-  extern bool set_probe_deployed(bool);
-  #define DEPLOY_PROBE() set_probe_deployed(true)
-  #define STOW_PROBE() set_probe_deployed(false)
-  bool ProbeStay = true;
-
-  constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
-                  ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
-                  ubl_3_point_2_X = UBL_PROBE_PT_2_X,
-                  ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
-                  ubl_3_point_3_X = UBL_PROBE_PT_3_X,
-                  ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
-
-  #define SIZE_OF_LITTLE_RAISE 0
-  #define BIG_RAISE_NOT_NEEDED 0
-  extern void lcd_quick_feedback();
-
-  /**
-   *   G29: Unified Bed Leveling by Roxy
-   *
-   *   Parameters understood by this leveling system:
-   *
-   *   A     Activate   Activate the Unified Bed Leveling system.
-   *
-   *   B #   Business   Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
-   *                    G29 P2 B   The mode of G29 P2 allows you to use a bussiness card or recipe card
-   *                    as a shim that the nozzle will pinch as it is lowered. The idea is that you
-   *                    can easily feel the nozzle getting to the same height by the amount of resistance
-   *                    the business card exhibits to movement. You should try to achieve the same amount
-   *                    of resistance on each probed point to facilitate accurate and repeatable measurements.
-   *                    You should be very careful not to drive the nozzle into the bussiness card with a
-   *                    lot of force as it is very possible to cause damage to your printer if your are
-   *                    careless. If you use the B option with G29 P2 B you can leave the number parameter off
-   *                    on its first use to enable measurement of the business card thickness. Subsequent usage
-   *                    of the B parameter can have the number previously measured supplied to the command.
-   *                    Incidently, you are much better off using something like a Spark Gap feeler gauge than
-   *                    something that compresses like a Business Card.
-   *
-   *   C     Continue   Continue, Constant, Current Location. This is not a primary command. C is used to
-   *                    further refine the behaviour of several other commands. Issuing a G29 P1 C will
-   *                    continue the generation of a partially constructed Mesh without invalidating what has
-   *                    been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
-   *                    location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
-   *                    it indicates to use the current location instead of defaulting to the center of the print bed.
-   *
-   *   D     Disable    Disable the Unified Bed Leveling system.
-   *
-   *   E     Stow_probe Stow the probe after each sampled point.
-   *
-   *   F #   Fade   *   Fade the amount of Mesh Based Compensation over a specified height. At the
-   *                    specified height, no correction is applied and natural printer kenimatics take over. If no
-   *                    number is specified for the command, 10mm is assumed to be reasonable.
-   *
-   *   G #   Grid   *   Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
-   *
-   *   H #   Height     Specify the Height to raise the nozzle after each manual probe of the bed. The
-   *                    default is 5mm.
-   *
-   *   I #   Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
-   *                    the X and Y parameter are used. If no number is specified, only the closest Mesh
-   *                    point to the location is invalidated. The M parameter is available as well to produce
-   *                    a map after the operation. This command is useful to invalidate a portion of the
-   *                    Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
-   *                    attempting to invalidate an isolated bad point in the mesh, the M option will indicate
-   *                    where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
-   *                    the bed and use this feature to select the center of the area (or cell) you want to
-   *                    invalidate.
-   *
-   *   K #   Kompare    Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
-   *                    command literally performs a diff between two Meshes.
-   *
-   *   L     Load   *   Load Mesh from the previously activated location in the EEPROM.
-   *
-   *   L #   Load   *   Load Mesh from the specified location in the EEPROM. Set this location as activated
-   *                    for subsequent Load and Store operations.
-   *
-   *   O     Map   *    Display the Mesh Map Topology.
-   *                    The parameter can be specified alone (ie. G29 O) or in combination with many of the
-   *                    other commands. The Mesh Map option works with all of the Phase
-   *                    commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)  The Map parameter can also of a Map Type
-   *                    specified.  A map type of 0 is the default is user readable.   A map type of 1 can
-   *                    be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
-   *                    mesh.
-   *
-   *   N    No Home     G29 normally insists that a G28 has been performed. You can over rule this with an
-   *                    N option. In general, you should not do this. This can only be done safely with
-   *                    commands that do not move the nozzle.
-   *
-   *   The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
-   *   start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
-   *   each additional Phase that processes it.
-   *
-   *   P0    Phase 0    Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
-   *                    3D Printer to the same state it was in before the Unified Bed Leveling Compensation
-   *                    was turned on. Setting the entire Mesh to Zero is a special case that allows
-   *                    a subsequent G or T leveling operation for backward compatibility.
-   *
-   *   P1    Phase 1    Invalidate entire Mesh and continue with automatic generation of the Mesh data using
-   *                    the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
-   *                    DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
-   *                    generated. This will be handled in Phase 2. If the Phase 1 command is given the
-   *                    C (Continue) parameter it does not invalidate the Mesh prior to automatically
-   *                    probing needed locations. This allows you to invalidate portions of the Mesh but still
-   *                    use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
-   *                    parameter can be given to prioritize where the command should be trying to measure points.
-   *                    If the X and Y parameters are not specified the current probe position is used. Phase 1
-   *                    allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
-   *                    Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
-   *                    It will suspend generation of the Mesh if it sees the user request that. (This check is
-   *                    only done between probe points. You will need to press and hold the switch until the
-   *                    Phase 1 command can detect it.)
-   *
-   *   P2    Phase 2    Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
-   *                    parameter to control the height between Mesh points. The default height for movement
-   *                    between Mesh points is 5mm. A smaller number can be used to make this part of the
-   *                    calibration less time consuming. You will be running the nozzle down until it just barely
-   *                    touches the glass. You should have the nozzle clean with no plastic obstructing your view.
-   *                    Use caution and move slowly. It is possible to damage your printer if you are careless.
-   *                    Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
-   *                    nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
-   *
-   *                    The H parameter can be set negative if your Mesh dips in a large area. You can press
-   *                    and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
-   *                    can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
-   *                    area you are manually probing. Note that the command tries to start you in a corner
-   *                    of the bed where movement will be predictable. You can force the location to be used in
-   *                    the distance calculations by using the X and Y parameters. You may find it is helpful to
-   *                    print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
-   *                    the nozzle will need to move in order to complete the command. The C parameter is
-   *                    available on the Phase 2 command also and indicates the search for points to measure should
-   *                    be done based on the current location of the nozzle.
-   *
-   *                    A B parameter is also available for this command and described up above. It places the
-   *                    manual probe subsystem into Business Card mode where the thickness of a business care is
-   *                    measured and then used to accurately set the nozzle height in all manual probing for the
-   *                    duration of the command. (S for Shim mode would be a better parameter name, but S is needed
-   *                    for Save or Store of the Mesh to EEPROM)  A Business card can be used, but you will have
-   *                    better results if you use a flexible Shim that does not compress very much. That makes it
-   *                    easier for you to get the nozzle to press with similar amounts of force against the shim so you
-   *                    can get accurate measurements. As you are starting to touch the nozzle against the shim try
-   *                    to get it to grasp the shim with the same force as when you measured the thickness of the
-   *                    shim at the start of the command.
-   *
-   *                    Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
-   *                    of the Mesh being built.
-   *
-   *   P3    Phase 3    Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
-   *                    used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
-   *                    is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
-   *                    of points to set. If the R parameter is specified the current nozzle position is used to
-   *                    find the closest points to alter unless the X and Y parameter are used to specify the fill
-   *                    location.
-   *
-   *   P4    Phase 4    Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
-   *                    an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
-   *                    (More work and details on doing this later!)
-   *                    The System will search for the closest Mesh Point to the nozzle. It will move the
-   *                    nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
-   *                    so it is just barely touching the bed. When the user clicks the control, the System
-   *                    will lock in that height for that point in the Mesh Compensation System.
-   *
-   *                    Phase 4 has several additional parameters that the user may find helpful. Phase 4
-   *                    can be started at a specific location by specifying an X and Y parameter. Phase 4
-   *                    can be requested to continue the adjustment of Mesh Points by using the R(epeat)
-   *                    parameter. If the Repetition count is not specified, it is assumed the user wishes
-   *                    to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
-   *                    The command can be terminated early (or after the area of interest has been edited) by
-   *                    pressing and holding the encoder wheel until the system recognizes the exit request.
-   *                    Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
-   *
-   *                    Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
-   *                    information left on the printer's bed from the G26 command it is very straight forward
-   *                    and easy to fine tune the Mesh. One concept that is important to remember and that
-   *                    will make using the Phase 4 command easy to use is this:  You are editing the Mesh Points.
-   *                    If you have too little clearance and not much plastic was extruded in an area, you want to
-   *                    LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
-   *                    RAISE the Mesh Point at that location.
-   *
-   *
-   *   P5    Phase 5    Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
-   *                    work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
-   *                    Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
-   *                    execute a G29 P6 C <mean height>.
-   *
-   *   P6    Phase 6    Shift Mesh height. The entire Mesh's height is adjusted by the height specified
-   *                    with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
-   *                    can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
-   *                    you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
-   *                    0.000 at the Z Home location.
-   *
-   *   Q     Test   *   Load specified Test Pattern to assist in checking correct operation of system. This
-   *                    command is not anticipated to be of much value to the typical user. It is intended
-   *                    for developers to help them verify correct operation of the Unified Bed Leveling System.
-   *
-   *   S     Store      Store the current Mesh in the Activated area of the EEPROM. It will also store the
-   *                    current state of the Unified Bed Leveling system in the EEPROM.
-   *
-   *   S #   Store      Store the current Mesh at the specified location in EEPROM. Activate this location
-   *                    for subsequent Load and Store operations. It will also store the current state of
-   *                    the Unified Bed Leveling system in the EEPROM.
-   *
-   *   S -1  Store      Store the current Mesh as a print out that is suitable to be feed back into
-   *                    the system at a later date. The text generated can be saved and later sent by PronterFace or
-   *                    Repetier Host to reconstruct the current mesh on another machine.
-   *
-   *   T     3-Point    Perform a 3 Point Bed Leveling on the current Mesh
-   *
-   *   U     Unlevel    Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
-   *                    Only used for G29 P1 O U   It will speed up the probing of the edge of the bed.  This
-   *                    is useful when the entire bed does not need to be probed because it will be adjusted.
-   *
-   *   W     What?      Display valuable data the Unified Bed Leveling System knows.
-   *
-   *   X #   *      *   X Location for this line of commands
-   *
-   *   Y #   *      *   Y Location for this line of commands
-   *
-   *   Z     Zero   *   Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
-   *                    by just doing a G29 Z
-   *
-   *   Z #   Zero   *   The entire Mesh can be raised or lowered to conform with the specified difference.
-   *                    zprobe_zoffset is added to the calculation.
-   *
-   *
-   *   Release Notes:
-   *   You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
-   *   kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
-   *   of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
-   *   respectively.)
-   *
-   *   When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
-   *   the Unified Bed Leveling probes points further and further away from the starting location. (The
-   *   starting location defaults to the center of the bed.)   The original Grid and Mesh leveling used
-   *   a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
-   *   allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
-   *   perform a small print and check out your settings quicker. You do not need to populate the
-   *   entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
-   *   you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
-   *   gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
-   *
-   *   The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
-   *   to get this Mesh data correct for a user's printer. We do not want this data destroyed as
-   *   new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
-   *   the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
-   *   other data stored in the EEPROM. (For sure the developers are going to complain about this, but
-   *   this is going to be helpful to the users!)
-   *
-   *   The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
-   *   'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
-   *   we now have the functionality and features of all three systems combined.
-   */
-
-  // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
-  static int g29_verbose_level, phase_value = -1, repetition_cnt,
-             storage_slot = 0, map_type; //unlevel_value = -1;
-  static bool repeat_flag, c_flag, x_flag, y_flag;
-  static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
-
-  #if ENABLED(ULTRA_LCD)
-    extern void lcd_setstatus(const char* message, const bool persist);
-    extern void lcd_setstatuspgm(const char* message, const uint8_t level);
-  #endif
-
-  void gcode_G29() {
-    SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
-    if (ubl.eeprom_start < 0) {
-      SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
-      SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
-      return;
-    }
-
-    if (!code_seen('N') && axis_unhomed_error(true, true, true))  // Don't allow auto-leveling without homing first
-      gcode_G28();
-
-    if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
-
-    // Invalidate Mesh Points. This command is a little bit asymetrical because
-    // it directly specifies the repetition count and does not use the 'R' parameter.
-    if (code_seen('I')) {
-      repetition_cnt = code_has_value() ? code_value_int() : 1;
-      while (repetition_cnt--) {
-        const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false);  // The '0' says we want to use the nozzle's position
-        if (location.x_index < 0) {
-          SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
-          break;            // No more invalid Mesh Points to populate
-        }
-        ubl.z_values[location.x_index][location.y_index] = NAN;
-      }
-      SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
-    }
-
-    if (code_seen('Q')) {
-
-      const int test_pattern = code_has_value() ? code_value_int() : -1;
-      if (!WITHIN(test_pattern, 0, 2)) {
-        SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
-        return;
-      }
-      SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
-      switch (test_pattern) {
-        case 0:
-          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {   // Create a bowl shape - similar to
-            for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
-              const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
-                          p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
-              ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
-            }
-          }
-          break;
-        case 1:
-          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {  // Create a diagonal line several Mesh cells thick that is raised
-            ubl.z_values[x][x] += 9.999;
-            ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
-          }
-          break;
-        case 2:
-          // Allow the user to specify the height because 10mm is a little extreme in some cases.
-          for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++)   // Create a rectangular raised area in
-            for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
-              ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
-          break;
-      }
-    }
-
-    /*
-    if (code_seen('U')) {
-      unlevel_value = code_value_int();
-      //if (!WITHIN(unlevel_value, 0, 7)) {
-      //  SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
-      //  return;
-      //}
-    }
-    //*/
-
-    if (code_seen('P')) {
-      phase_value = code_value_int();
-      if (!WITHIN(phase_value, 0, 7)) {
-        SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
-        return;
-      }
-      switch (phase_value) {
-        case 0:
-          //
-          // Zero Mesh Data
-          //
-          ubl.reset();
-          SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
-          break;
-
-        case 1:
-          //
-          // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
-          //
-          if (!code_seen('C') ) {
-            ubl.invalidate();
-            SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
-          }
-          if (g29_verbose_level > 1) {
-            SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
-            SERIAL_ECHO(x_pos);
-            SERIAL_ECHOPAIR(",", y_pos);
-            SERIAL_PROTOCOLLNPGM(")\n");
-          }
-          probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
-                            code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
-          break;
-
-        case 2: {
-          //
-          // Manually Probe Mesh in areas that can't be reached by the probe
-          //
-          SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
-          do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
-          if (!x_flag && !y_flag) {      // use a good default location for the path
-            x_pos = X_MIN_POS;
-            y_pos = Y_MIN_POS;
-            if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)   // The flipped > and < operators on these two comparisons is
-              x_pos = X_MAX_POS;                    // intentional. It should cause the probed points to follow a
-
-            if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)   // nice path on Cartesian printers. It may make sense to
-              y_pos = Y_MAX_POS;                    // have Delta printers default to the center of the bed.
-
-          }                                         // For now, until that is decided, it can be forced with the X
-                                                    // and Y parameters.
-          if (code_seen('C')) {
-            x_pos = current_position[X_AXIS];
-            y_pos = current_position[Y_AXIS];
-          }
-
-          const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
-
-          if (code_seen('B')) {
-            card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
-
-            if (fabs(card_thickness) > 1.5) {
-              SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
-              return;
-            }
-          }
-          manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
-
-        } break;
-
-        case 3: {
-          //
-          // Populate invalid Mesh areas with a constant
-          //
-          const float height = code_seen('C') ? ubl_constant : 0.0;
-          // If no repetition is specified, do the whole Mesh
-          if (!repeat_flag) repetition_cnt = 9999;
-          while (repetition_cnt--) {
-            const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
-            if (location.x_index < 0) break; // No more invalid Mesh Points to populate
-            ubl.z_values[location.x_index][location.y_index] = height;
-          }
-        } break;
-
-        case 4:
-          //
-          // Fine Tune (i.e., Edit) the Mesh
-          //
-          fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
-          break;
-        case 5:
-          find_mean_mesh_height();
-          break;
-        case 6:
-          shift_mesh_height();
-          break;
-
-        case 10:
-          // [DEBUG] Pay no attention to this stuff. It can be removed soon.
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
-          KEEPALIVE_STATE(PAUSED_FOR_USER);
-          ubl.has_control_of_lcd_panel++;
-          while (!ubl_lcd_clicked()) {
-            safe_delay(250);
-            if (ubl.encoder_diff) {
-              SERIAL_ECHOLN((int)ubl.encoder_diff);
-              ubl.encoder_diff = 0;
-            }
-          }
-          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
-          ubl.has_control_of_lcd_panel = false;
-          KEEPALIVE_STATE(IN_HANDLER);
-          break;
-
-        case 11:
-          // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
-          SERIAL_ECHO_START;
-          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
-          KEEPALIVE_STATE(PAUSED_FOR_USER);
-          wait_for_user = true;
-          while (wait_for_user) {
-            safe_delay(250);
-            if (ubl.encoder_diff) {
-              SERIAL_ECHOLN((int)ubl.encoder_diff);
-              ubl.encoder_diff = 0;
-            }
-          }
-          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
-          KEEPALIVE_STATE(IN_HANDLER);
-          break;
-      }
-    }
-
-    if (code_seen('T')) {
-      const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
-                  lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
-                  lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
-                  ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
-                  ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
-                  ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
-
-      float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
-            z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
-            z3 = probe_pt(lx3, ly3, true  /*Stow Flag*/, g29_verbose_level);
-
-      //  We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
-      //  the Mesh is tilted!  (We need to compensate each probe point by what the Mesh says that location's height is)
-
-      z1 -= ubl.get_z_correction(lx1, ly1);
-      z2 -= ubl.get_z_correction(lx2, ly2);
-      z3 -= ubl.get_z_correction(lx3, ly3);
-
-      do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
-      tilt_mesh_based_on_3pts(z1, z2, z3);
-    }
-
-    //
-    // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
-    // good to have the extra information. Soon... we prune this to just a few items
-    //
-    if (code_seen('W')) g29_what_command();
-
-    //
-    // When we are fully debugged, the EEPROM dump command will get deleted also. But
-    // right now, it is good to have the extra information. Soon... we prune this.
-    //
-    if (code_seen('J')) g29_eeprom_dump();   // EEPROM Dump
-
-    //
-    // When we are fully debugged, this may go away. But there are some valid
-    // use cases for the users. So we can wait and see what to do with it.
-    //
-
-    if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
-      g29_compare_current_mesh_to_stored_mesh();
-
-    //
-    // Load a Mesh from the EEPROM
-    //
-
-    if (code_seen('L')) {     // Load Current Mesh Data
-      storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
-
-      const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
-
-      if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
-        SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
-        return;
-      }
-      ubl.load_mesh(storage_slot);
-      ubl.state.eeprom_storage_slot = storage_slot;
-      if (storage_slot != ubl.state.eeprom_storage_slot)
-        ubl.store_state();
-      SERIAL_PROTOCOLLNPGM("Done.\n");
-    }
-
-    //
-    // Store a Mesh in the EEPROM
-    //
-
-    if (code_seen('S')) {     // Store (or Save) Current Mesh Data
-      storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
-
-      if (storage_slot == -1) {                     // Special case, we are going to 'Export' the mesh to the
-        SERIAL_ECHOLNPGM("G29 I 999");              // host in a form it can be reconstructed on a different machine
-        for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
-          for (uint8_t y = 0;  y < UBL_MESH_NUM_Y_POINTS; y++)
-            if (!isnan(ubl.z_values[x][y])) {
-              SERIAL_ECHOPAIR("M421 I ", x);
-              SERIAL_ECHOPAIR(" J ", y);
-              SERIAL_ECHOPGM(" Z ");
-              SERIAL_ECHO_F(ubl.z_values[x][y], 6);
-              SERIAL_EOL;
-            }
-        return;
-      }
-
-      const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
-
-      if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
-        SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
-        SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
-        goto LEAVE;
-      }
-      ubl.store_mesh(storage_slot);
-      ubl.state.eeprom_storage_slot = storage_slot;
-      //
-      //  if (storage_slot != ubl.state.eeprom_storage_slot)
-      ubl.store_state();    // Always save an updated copy of the UBL State info
-
-      SERIAL_PROTOCOLLNPGM("Done.\n");
-    }
-
-    if (code_seen('O') || code_seen('M'))
-      ubl.display_map(code_has_value() ? code_value_int() : 0);
-
-    if (code_seen('Z')) {
-      if (code_has_value())
-        ubl.state.z_offset = code_value_float();   // do the simple case. Just lock in the specified value
-      else {
-        save_ubl_active_state_and_disable();
-        //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
-
-        ubl.has_control_of_lcd_panel++;     // Grab the LCD Hardware
-        measured_z = 1.5;
-        do_blocking_move_to_z(measured_z);  // Get close to the bed, but leave some space so we don't damage anything
-                                            // The user is not going to be locking in a new Z-Offset very often so
-                                            // it won't be that painful to spin the Encoder Wheel for 1.5mm
-        lcd_implementation_clear();
-        lcd_z_offset_edit_setup(measured_z);
-
-        KEEPALIVE_STATE(PAUSED_FOR_USER);
-
-        do {
-          measured_z = lcd_z_offset_edit();
-          idle();
-          do_blocking_move_to_z(measured_z);
-        } while (!ubl_lcd_clicked());
-
-        ubl.has_control_of_lcd_panel++;   // There is a race condition for the Encoder Wheel getting clicked.
-                                          // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
-                                          // or here. So, until we are done looking for a long Encoder Wheel Press,
-                                          // we need to take control of the panel
-
-        KEEPALIVE_STATE(IN_HANDLER);
-
-        lcd_return_to_status();
-
-        const millis_t nxt = millis() + 1500UL;
-        while (ubl_lcd_clicked()) { // debounce and watch for abort
-          idle();
-          if (ELAPSED(millis(), nxt)) {
-            SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
-            do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-            lcd_setstatuspgm("Z-Offset Stopped");
-            restore_ubl_active_state_and_leave();
-            goto LEAVE;
-          }
-        }
-        ubl.has_control_of_lcd_panel = false;
-        safe_delay(20); // We don't want any switch noise.
-
-        ubl.state.z_offset = measured_z;
-
-        lcd_implementation_clear();
-        restore_ubl_active_state_and_leave();
-      }
-    }
-
-    LEAVE:
-
-    #if ENABLED(ULTRA_LCD)
-      lcd_reset_alert_level();
-      lcd_setstatuspgm("");
-      lcd_quick_feedback();
-    #endif
-
-    ubl.has_control_of_lcd_panel = false;
-  }
-
-  void find_mean_mesh_height() {
-    uint8_t x, y;
-    int n;
-    float sum, sum_of_diff_squared, sigma, difference, mean;
-
-    sum = sum_of_diff_squared = 0.0;
-    n = 0;
-    for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
-      for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
-        if (!isnan(ubl.z_values[x][y])) {
-          sum += ubl.z_values[x][y];
-          n++;
-        }
-
-    mean = sum / n;
-
-    //
-    // Now do the sumation of the squares of difference from mean
-    //
-    for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
-      for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
-        if (!isnan(ubl.z_values[x][y])) {
-          difference = (ubl.z_values[x][y] - mean);
-          sum_of_diff_squared += difference * difference;
-        }
-
-    SERIAL_ECHOLNPAIR("# of samples: ", n);
-    SERIAL_ECHOPGM("Mean Mesh Height: ");
-    SERIAL_ECHO_F(mean, 6);
-    SERIAL_EOL;
-
-    sigma = sqrt(sum_of_diff_squared / (n + 1));
-    SERIAL_ECHOPGM("Standard Deviation: ");
-    SERIAL_ECHO_F(sigma, 6);
-    SERIAL_EOL;
-
-    if (c_flag)
-      for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
-        for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
-          if (!isnan(ubl.z_values[x][y]))
-            ubl.z_values[x][y] -= mean + ubl_constant;
-  }
-
-  void shift_mesh_height() {
-    for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
-      for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
-        if (!isnan(ubl.z_values[x][y]))
-          ubl.z_values[x][y] += ubl_constant;
-  }
-
-  /**
-   * Probe all invalidated locations of the mesh that can be reached by the probe.
-   * This attempts to fill in locations closest to the nozzle's start location first.
-   */
-  void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
-    mesh_index_pair location;
-
-    ubl.has_control_of_lcd_panel++;
-    save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
-    DEPLOY_PROBE();
-
-    do {
-      if (ubl_lcd_clicked()) {
-        SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
-        lcd_quick_feedback();
-        STOW_PROBE();
-        while (ubl_lcd_clicked()) idle();
-        ubl.has_control_of_lcd_panel = false;
-        restore_ubl_active_state_and_leave();
-        safe_delay(50);  // Debounce the Encoder wheel
-        return;
-      }
-
-      location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest );  // the '1' says we want the location to be relative to the probe
-      if (location.x_index >= 0 && location.y_index >= 0) {
-
-        const float rawx = ubl.mesh_index_to_xpos[location.x_index],
-                    rawy = ubl.mesh_index_to_ypos[location.y_index];
-
-        // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
-        if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
-          SERIAL_ERROR_START;
-          SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
-          ubl.has_control_of_lcd_panel = false;
-          goto LEAVE;
-        }
-        const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
-        ubl.z_values[location.x_index][location.y_index] = measured_z;
-      }
-
-      if (do_ubl_mesh_map) ubl.display_map(map_type);
-
-    } while (location.x_index >= 0 && location.y_index >= 0);
-
-    LEAVE:
-
-    STOW_PROBE();
-    restore_ubl_active_state_and_leave();
-
-    do_blocking_move_to_xy(
-      constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
-      constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
-    );
-  }
-
-  vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
-    float c, d, t;
-    int i, j;
-
-    vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
-                            (ubl_3_point_1_Y - ubl_3_point_2_Y),
-                            (z1 - z2) ),
-
-             v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
-                            (ubl_3_point_3_Y - ubl_3_point_2_Y),
-                            (z3 - z2) ),
-
-             normal = vector_3::cross(v1, v2);
-
-    // printf("[%f,%f,%f]    ", normal.x, normal.y, normal.z);
-
-    /**
-     * This code does two things. This vector is normal to the tilted plane.
-     * However, we don't know its direction. We need it to point up. So if
-     * Z is negative, we need to invert the sign of all components of the vector
-     * We also need Z to be unity because we are going to be treating this triangle
-     * as the sin() and cos() of the bed's tilt
-     */
-    const float inv_z = 1.0 / normal.z;
-    normal.x *= inv_z;
-    normal.y *= inv_z;
-    normal.z = 1.0;
-
-    //
-    // All of 3 of these points should give us the same d constant
-    //
-    t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
-    d = t + normal.z * z1;
-    c = d - t;
-    SERIAL_ECHOPGM("d from 1st point: ");
-    SERIAL_ECHO_F(d, 6);
-    SERIAL_ECHOPGM("  c: ");
-    SERIAL_ECHO_F(c, 6);
-    SERIAL_EOL;
-    t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
-    d = t + normal.z * z2;
-    c = d - t;
-    SERIAL_ECHOPGM("d from 2nd point: ");
-    SERIAL_ECHO_F(d, 6);
-    SERIAL_ECHOPGM("  c: ");
-    SERIAL_ECHO_F(c, 6);
-    SERIAL_EOL;
-    t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
-    d = t + normal.z * z3;
-    c = d - t;
-    SERIAL_ECHOPGM("d from 3rd point: ");
-    SERIAL_ECHO_F(d, 6);
-    SERIAL_ECHOPGM("  c: ");
-    SERIAL_ECHO_F(c, 6);
-    SERIAL_EOL;
-
-    for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
-      for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
-        c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
-        ubl.z_values[i][j] += c;
-      }
-    }
-    return normal;
-  }
-
-  float use_encoder_wheel_to_measure_point() {
-    KEEPALIVE_STATE(PAUSED_FOR_USER);
-    while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
-      idle();
-      if (ubl.encoder_diff) {
-        do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
-        ubl.encoder_diff = 0;
-      }
-    }
-    KEEPALIVE_STATE(IN_HANDLER);
-    return current_position[Z_AXIS];
-  }
-
-  float measure_business_card_thickness(const float &in_height) {
-
-    ubl.has_control_of_lcd_panel++;
-    save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
-
-    SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
-    do_blocking_move_to_z(in_height);
-    do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
-      //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
-
-    const float z1 = use_encoder_wheel_to_measure_point();
-    do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
-    ubl.has_control_of_lcd_panel = false;
-
-    SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
-    const float z2 = use_encoder_wheel_to_measure_point();
-    do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
-
-    if (g29_verbose_level > 1) {
-      SERIAL_PROTOCOLPGM("Business Card is: ");
-      SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
-      SERIAL_PROTOCOLLNPGM("mm thick.");
-    }
-    restore_ubl_active_state_and_leave();
-    return abs(z1 - z2);
-  }
-
-  void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
-
-    ubl.has_control_of_lcd_panel++;
-    save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
-    do_blocking_move_to_z(z_clearance);
-    do_blocking_move_to_xy(lx, ly);
-
-    float last_x = -9999.99, last_y = -9999.99;
-    mesh_index_pair location;
-    do {
-      if (do_ubl_mesh_map) ubl.display_map(map_type);
-
-      location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
-      // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
-      if (location.x_index < 0 && location.y_index < 0) continue;
-
-      const float rawx = ubl.mesh_index_to_xpos[location.x_index],
-                  rawy = ubl.mesh_index_to_ypos[location.y_index];
-
-      // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
-      if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
-        SERIAL_ERROR_START;
-        SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
-        ubl.has_control_of_lcd_panel = false;
-        goto LEAVE;
-      }
-
-      const float xProbe = LOGICAL_X_POSITION(rawx),
-                  yProbe = LOGICAL_Y_POSITION(rawy),
-                  dx = xProbe - last_x,
-                  dy = yProbe - last_y;
-
-      if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
-        do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
-      else
-        do_blocking_move_to_z(z_clearance);
-
-      do_blocking_move_to_xy(xProbe, yProbe);
-
-      last_x = xProbe;
-      last_y = yProbe;
-
-      KEEPALIVE_STATE(PAUSED_FOR_USER);
-      ubl.has_control_of_lcd_panel = true;
-
-      while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
-        idle();
-        if (ubl.encoder_diff) {
-          do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
-          ubl.encoder_diff = 0;
-        }
-      }
-
-      const millis_t nxt = millis() + 1500L;
-      while (ubl_lcd_clicked()) {     // debounce and watch for abort
-        idle();
-        if (ELAPSED(millis(), nxt)) {
-          SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
-          do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-          lcd_quick_feedback();
-          while (ubl_lcd_clicked()) idle();
-          ubl.has_control_of_lcd_panel = false;
-          KEEPALIVE_STATE(IN_HANDLER);
-          restore_ubl_active_state_and_leave();
-          return;
-        }
-      }
-
-      ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
-      if (g29_verbose_level > 2) {
-        SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
-        SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
-        SERIAL_EOL;
-      }
-    } while (location.x_index >= 0 && location.y_index >= 0);
-
-    if (do_ubl_mesh_map) ubl.display_map(map_type);
-
-    LEAVE:
-    restore_ubl_active_state_and_leave();
-    KEEPALIVE_STATE(IN_HANDLER);
-    do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-    do_blocking_move_to_xy(lx, ly);
-  }
-
-  bool g29_parameter_parsing() {
-    #if ENABLED(ULTRA_LCD)
-      lcd_setstatuspgm("Doing G29 UBL!");
-      lcd_quick_feedback();
-    #endif
-
-    g29_verbose_level = code_seen('V') ? code_value_int() : 0;
-    if (!WITHIN(g29_verbose_level, 0, 4)) {
-      SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
-      return UBL_ERR;
-    }
-
-    x_flag = code_seen('X') && code_has_value();
-    x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
-    if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
-      SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
-      return UBL_ERR;
-    }
-
-    y_flag = code_seen('Y') && code_has_value();
-    y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
-    if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
-      SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
-      return UBL_ERR;
-    }
-
-    if (x_flag != y_flag) {
-      SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
-      return UBL_ERR;
-    }
-
-    if (code_seen('A')) {     // Activate the Unified Bed Leveling System
-      ubl.state.active = 1;
-      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
-      ubl.store_state();
-    }
-
-    c_flag = code_seen('C') && code_has_value();
-    ubl_constant = c_flag ? code_value_float() : 0.0;
-
-    if (code_seen('D')) {     // Disable the Unified Bed Leveling System
-      ubl.state.active = 0;
-      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
-      ubl.store_state();
-    }
-
-    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
-      if (code_seen('F') && code_has_value()) {
-        const float fh = code_value_float();
-        if (!WITHIN(fh, 0.0, 100.0)) {
-          SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
-          return UBL_ERR;
-        }
-        ubl.state.g29_correction_fade_height = fh;
-        ubl.state.g29_fade_height_multiplier = 1.0 / fh;
-      }
-    #endif
-
-    repeat_flag = code_seen('R');
-    repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
-    if (repetition_cnt < 1) {
-      SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
-      return UBL_ERR;
-    }
-
-    map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
-    if (!WITHIN(map_type, 0, 1)) {
-      SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
-      return UBL_ERR;
-    }
-
-    /*
-    if (code_seen('M')) {     // Check if a map type was specified
-      map_type = code_has_value() ? code_value_int() : 0;
-      if (!WITHIN(map_type, 0, 1)) {
-        SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
-        return UBL_ERR;
-      }
-    }
-    //*/
-
-    return UBL_OK;
-  }
-
-  /**
-   * This function goes away after G29 debug is complete. But for right now, it is a handy
-   * routine to dump binary data structures.
-   */
-  void dump(char * const str, const float &f) {
-    char *ptr;
-
-    SERIAL_PROTOCOL(str);
-    SERIAL_PROTOCOL_F(f, 8);
-    SERIAL_PROTOCOLPGM("  ");
-    ptr = (char*)&f;
-    for (uint8_t i = 0; i < 4; i++)
-      SERIAL_PROTOCOLPAIR("  ", hex_byte(*ptr++));
-    SERIAL_PROTOCOLPAIR("  isnan()=", isnan(f));
-    SERIAL_PROTOCOLPAIR("  isinf()=", isinf(f));
-
-    if (f == -INFINITY)
-      SERIAL_PROTOCOLPGM("  Minus Infinity detected.");
-
-    SERIAL_EOL;
-  }
-
-  static int ubl_state_at_invocation = 0,
-             ubl_state_recursion_chk = 0;
-
-  void save_ubl_active_state_and_disable() {
-    ubl_state_recursion_chk++;
-    if (ubl_state_recursion_chk != 1) {
-      SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
-      lcd_setstatuspgm("save_UBL_active() error");
-      lcd_quick_feedback();
-      return;
-    }
-    ubl_state_at_invocation = ubl.state.active;
-    ubl.state.active = 0;
-  }
-
-  void restore_ubl_active_state_and_leave() {
-    if (--ubl_state_recursion_chk) {
-      SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
-      lcd_setstatuspgm("restore_UBL_active() error");
-      lcd_quick_feedback();
-      return;
-    }
-    ubl.state.active = ubl_state_at_invocation;
-  }
-
-
-  /**
-   * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
-   * good to have the extra information. Soon... we prune this to just a few items
-   */
-  void g29_what_command() {
-    const uint16_t k = E2END - ubl.eeprom_start;
-
-    SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
-    if (ubl.state.active)
-      SERIAL_PROTOCOLCHAR('A');
-    else
-      SERIAL_PROTOCOLPGM("In");
-    SERIAL_PROTOCOLLNPGM("ctive.\n");
-    safe_delay(50);
-
-    if (ubl.state.eeprom_storage_slot == -1)
-      SERIAL_PROTOCOLPGM("No Mesh Loaded.");
-    else {
-      SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
-      SERIAL_PROTOCOLPGM(" Loaded.");
-    }
-    SERIAL_EOL;
-    safe_delay(50);
-
-    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
-      SERIAL_PROTOCOLLNPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
-    #endif
-
-    SERIAL_PROTOCOLPGM("z_offset: ");
-    SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
-    SERIAL_EOL;
-    safe_delay(50);
-
-    SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
-    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
-      SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
-      SERIAL_PROTOCOLPGM("  ");
-      safe_delay(50);
-    }
-    SERIAL_EOL;
-
-    SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
-    for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
-      SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
-      SERIAL_PROTOCOLPGM("  ");
-      safe_delay(50);
-    }
-    SERIAL_EOL;
-
-    #if HAS_KILL
-      SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
-      SERIAL_PROTOCOLLNPAIR("  state:", READ(KILL_PIN));
-    #endif
-    SERIAL_EOL;
-    safe_delay(50);
-
-    SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
-    SERIAL_EOL;
-    SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
-    SERIAL_EOL;
-    safe_delay(50);
-    SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
-
-    SERIAL_PROTOCOLLNPAIR("end of EEPROM              : 0x", hex_word(E2END));
-    safe_delay(50);
-
-    SERIAL_PROTOCOLLNPAIR("sizeof(ubl) :  ", (int)sizeof(ubl));
-    SERIAL_EOL;
-    SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
-    SERIAL_EOL;
-    safe_delay(50);
-
-    SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
-    safe_delay(50);
-
-    SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
-    SERIAL_PROTOCOLLNPGM(" meshes.\n");
-    safe_delay(50);
-
-    SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
-
-    SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS  ", UBL_MESH_NUM_X_POINTS);
-    SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS  ", UBL_MESH_NUM_Y_POINTS);
-    safe_delay(50);
-    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X         ", UBL_MESH_MIN_X);
-    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y         ", UBL_MESH_MIN_Y);
-    safe_delay(50);
-    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X         ", UBL_MESH_MAX_X);
-    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y         ", UBL_MESH_MAX_Y);
-    safe_delay(50);
-    SERIAL_PROTOCOLPGM("\nMESH_X_DIST        ");
-    SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
-    SERIAL_PROTOCOLPGM("\nMESH_Y_DIST        ");
-    SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
-    SERIAL_EOL;
-    safe_delay(50);
-
-    if (!ubl.sanity_check())
-      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
-  }
-
-  /**
-   * When we are fully debugged, the EEPROM dump command will get deleted also. But
-   * right now, it is good to have the extra information. Soon... we prune this.
-   */
-  void g29_eeprom_dump() {
-    unsigned char cccc;
-    uint16_t kkkk;
-
-    SERIAL_ECHO_START;
-    SERIAL_ECHOLNPGM("EEPROM Dump:");
-    for (uint16_t i = 0; i < E2END + 1; i += 16) {
-      if (!(i & 0x3)) idle();
-      print_hex_word(i);
-      SERIAL_ECHOPGM(": ");
-      for (uint16_t j = 0; j < 16; j++) {
-        kkkk = i + j;
-        eeprom_read_block(&cccc, (void *)kkkk, 1);
-        print_hex_byte(cccc);
-        SERIAL_ECHO(' ');
-      }
-      SERIAL_EOL;
-    }
-    SERIAL_EOL;
-  }
-
-  /**
-   * When we are fully debugged, this may go away. But there are some valid
-   * use cases for the users. So we can wait and see what to do with it.
-   */
-  void g29_compare_current_mesh_to_stored_mesh() {
-    float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
-
-    if (!code_has_value()) {
-      SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
-      return;
-    }
-    storage_slot = code_value_int();
-
-    int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
-
-    if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
-      SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
-      return;
-    }
-
-    j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
-    eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
-
-    SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
-    SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
-                                                                        // the address in the EEPROM where the Mesh is stored.
-
-    for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
-      for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
-        ubl.z_values[x][y] -= tmp_z_values[x][y];
-  }
-
-  mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
-    float distance, closest = far_flag ? -99999.99 : 99999.99;
-    mesh_index_pair return_val;
-
-    return_val.x_index = return_val.y_index = -1;
-
-    const float current_x = current_position[X_AXIS],
-                current_y = current_position[Y_AXIS];
-
-    // Get our reference position. Either the nozzle or probe location.
-    const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
-                py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
-
-    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
-      for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
-
-        if ( (type == INVALID && isnan(ubl.z_values[i][j]))  // Check to see if this location holds the right thing
-          || (type == REAL && !isnan(ubl.z_values[i][j]))
-          || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
-        ) {
-
-          // We only get here if we found a Mesh Point of the specified type
-
-          const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
-                      rawy = ubl.mesh_index_to_ypos[j];
-
-          // If using the probe as the reference there are some unreachable locations.
-          // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
-
-          if (probe_as_reference &&
-            (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
-          ) continue;
-
-          // Unreachable. Check if it's the closest location to the nozzle.
-          // Add in a weighting factor that considers the current location of the nozzle.
-
-          const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
-                      my = LOGICAL_Y_POSITION(rawy);
-
-          distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
-
-          if (far_flag) {                                           // If doing the far_flag action, we want to be as far as possible
-            for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) {   // from the starting point and from any other probed points.  We
-              for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
-                if (!isnan(ubl.z_values[k][l])) {                       // in the mesh. So we add in some of the distance to every probed
-                  distance += sq(i - k) * (MESH_X_DIST) * .05       // point we can find.
-                            + sq(j - l) * (MESH_Y_DIST) * .05;
-                }
-              }
-            }
-          }
-
-          if (far_flag == (distance > closest) && distance != closest) {  // if far_flag, look for farthest point
-            closest = distance;       // We found a closer/farther location with
-            return_val.x_index = i;   // the specified type of mesh value.
-            return_val.y_index = j;
-            return_val.distance = closest;
-          }
-        }
-      } // for j
-    } // for i
-
-    return return_val;
-  }
-
-  void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
-    mesh_index_pair location;
-    uint16_t not_done[16];
-    int32_t round_off;
-
-    save_ubl_active_state_and_disable();
-    memset(not_done, 0xFF, sizeof(not_done));
-
-    #if ENABLED(ULTRA_LCD)
-      lcd_setstatuspgm("Fine Tuning Mesh");
-    #endif
-
-    do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-    do_blocking_move_to_xy(lx, ly);
-    do {
-      if (do_ubl_mesh_map) ubl.display_map(map_type);
-
-      location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx,  ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
-                                                                                              // It doesn't matter if the probe can not reach this
-                                                                                              // location. This is a manual edit of the Mesh Point.
-      if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
-
-      bit_clear(not_done, location.x_index, location.y_index);  // Mark this location as 'adjusted' so we will find a
-                                                                // different location the next time through the loop
-
-      const float rawx = ubl.mesh_index_to_xpos[location.x_index],
-                  rawy = ubl.mesh_index_to_ypos[location.y_index];
-
-      // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
-      if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
-        SERIAL_ERROR_START;
-        SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
-        ubl.has_control_of_lcd_panel = false;
-        goto FINE_TUNE_EXIT;
-      }
-
-      do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);    // Move the nozzle to where we are going to edit
-      do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
-
-      float new_z = ubl.z_values[location.x_index][location.y_index];
-
-      round_off = (int32_t)(new_z * 1000.0);    // we chop off the last digits just to be clean. We are rounding to the
-      new_z = float(round_off) / 1000.0;
-
-      KEEPALIVE_STATE(PAUSED_FOR_USER);
-      ubl.has_control_of_lcd_panel = true;
-
-      lcd_implementation_clear();
-      lcd_mesh_edit_setup(new_z);
-
-      do {
-        new_z = lcd_mesh_edit();
-        idle();
-      } while (!ubl_lcd_clicked());
-
-      lcd_return_to_status();
-
-      ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
-                                           // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
-                                           // or here.
-
-      const millis_t nxt = millis() + 1500UL;
-      while (ubl_lcd_clicked()) { // debounce and watch for abort
-        idle();
-        if (ELAPSED(millis(), nxt)) {
-          lcd_return_to_status();
-          //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
-          do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-          lcd_setstatuspgm("Mesh Editing Stopped");
-
-          while (ubl_lcd_clicked()) idle();
-
-          goto FINE_TUNE_EXIT;
-        }
-      }
-
-      safe_delay(20);                       // We don't want any switch noise.
-
-      ubl.z_values[location.x_index][location.y_index] = new_z;
-
-      lcd_implementation_clear();
-
-    } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
-
-    FINE_TUNE_EXIT:
-
-    ubl.has_control_of_lcd_panel = false;
-    KEEPALIVE_STATE(IN_HANDLER);
-
-    if (do_ubl_mesh_map) ubl.display_map(map_type);
-    restore_ubl_active_state_and_leave();
-    do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-
-    do_blocking_move_to_xy(lx, ly);
-
-    #if ENABLED(ULTRA_LCD)
-      lcd_setstatuspgm("Done Editing Mesh");
-    #endif
-    SERIAL_ECHOLNPGM("Done Editing Mesh");
-  }
-
+/**
+ * Marlin 3D Printer Firmware
+ * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+#include "MarlinConfig.h"
+
+#if ENABLED(AUTO_BED_LEVELING_UBL)
+  //#include "vector_3.h"
+  //#include "qr_solve.h"
+
+  #include "UBL.h"
+  #include "Marlin.h"
+  #include "hex_print_routines.h"
+  #include "configuration_store.h"
+  #include "planner.h"
+  #include "ultralcd.h"
+
+  #include <math.h>
+
+  void lcd_babystep_z();
+  void lcd_return_to_status();
+  bool lcd_clicked();
+  void lcd_implementation_clear();
+  void lcd_mesh_edit_setup(float initial);
+  float lcd_mesh_edit();
+  void lcd_z_offset_edit_setup(float);
+  float lcd_z_offset_edit();
+  extern float meshedit_done;
+  extern long babysteps_done;
+  extern float code_value_float();
+  extern bool code_value_bool();
+  extern bool code_has_value();
+  extern float probe_pt(float x, float y, bool, int);
+  extern bool set_probe_deployed(bool);
+  #define DEPLOY_PROBE() set_probe_deployed(true)
+  #define STOW_PROBE() set_probe_deployed(false)
+  bool ProbeStay = true;
+
+  constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
+                  ubl_3_point_1_Y = UBL_PROBE_PT_1_Y,
+                  ubl_3_point_2_X = UBL_PROBE_PT_2_X,
+                  ubl_3_point_2_Y = UBL_PROBE_PT_2_Y,
+                  ubl_3_point_3_X = UBL_PROBE_PT_3_X,
+                  ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
+
+  #define SIZE_OF_LITTLE_RAISE 0
+  #define BIG_RAISE_NOT_NEEDED 0
+  extern void lcd_quick_feedback();
+
+  /**
+   *   G29: Unified Bed Leveling by Roxy
+   *
+   *   Parameters understood by this leveling system:
+   *
+   *   A     Activate   Activate the Unified Bed Leveling system.
+   *
+   *   B #   Business   Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
+   *                    G29 P2 B   The mode of G29 P2 allows you to use a bussiness card or recipe card
+   *                    as a shim that the nozzle will pinch as it is lowered. The idea is that you
+   *                    can easily feel the nozzle getting to the same height by the amount of resistance
+   *                    the business card exhibits to movement. You should try to achieve the same amount
+   *                    of resistance on each probed point to facilitate accurate and repeatable measurements.
+   *                    You should be very careful not to drive the nozzle into the bussiness card with a
+   *                    lot of force as it is very possible to cause damage to your printer if your are
+   *                    careless. If you use the B option with G29 P2 B you can leave the number parameter off
+   *                    on its first use to enable measurement of the business card thickness. Subsequent usage
+   *                    of the B parameter can have the number previously measured supplied to the command.
+   *                    Incidently, you are much better off using something like a Spark Gap feeler gauge than
+   *                    something that compresses like a Business Card.
+   *
+   *   C     Continue   Continue, Constant, Current Location. This is not a primary command. C is used to
+   *                    further refine the behaviour of several other commands. Issuing a G29 P1 C will
+   *                    continue the generation of a partially constructed Mesh without invalidating what has
+   *                    been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
+   *                    location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
+   *                    it indicates to use the current location instead of defaulting to the center of the print bed.
+   *
+   *   D     Disable    Disable the Unified Bed Leveling system.
+   *
+   *   E     Stow_probe Stow the probe after each sampled point.
+   *
+   *   F #   Fade   *   Fade the amount of Mesh Based Compensation over a specified height. At the
+   *                    specified height, no correction is applied and natural printer kenimatics take over. If no
+   *                    number is specified for the command, 10mm is assumed to be reasonable.
+   *
+   *   G #   Grid   *   Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
+   *
+   *   H #   Height     Specify the Height to raise the nozzle after each manual probe of the bed. The
+   *                    default is 5mm.
+   *
+   *   I #   Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
+   *                    the X and Y parameter are used. If no number is specified, only the closest Mesh
+   *                    point to the location is invalidated. The M parameter is available as well to produce
+   *                    a map after the operation. This command is useful to invalidate a portion of the
+   *                    Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
+   *                    attempting to invalidate an isolated bad point in the mesh, the M option will indicate
+   *                    where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
+   *                    the bed and use this feature to select the center of the area (or cell) you want to
+   *                    invalidate.
+   *
+   *   K #   Kompare    Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
+   *                    command literally performs a diff between two Meshes.
+   *
+   *   L     Load   *   Load Mesh from the previously activated location in the EEPROM.
+   *
+   *   L #   Load   *   Load Mesh from the specified location in the EEPROM. Set this location as activated
+   *                    for subsequent Load and Store operations.
+   *
+   *   O     Map   *    Display the Mesh Map Topology.
+   *                    The parameter can be specified alone (ie. G29 O) or in combination with many of the
+   *                    other commands. The Mesh Map option works with all of the Phase
+   *                    commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)  The Map parameter can also of a Map Type
+   *                    specified.  A map type of 0 is the default is user readable.   A map type of 1 can
+   *                    be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's
+   *                    mesh.
+   *
+   *   N    No Home     G29 normally insists that a G28 has been performed. You can over rule this with an
+   *                    N option. In general, you should not do this. This can only be done safely with
+   *                    commands that do not move the nozzle.
+   *
+   *   The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
+   *   start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
+   *   each additional Phase that processes it.
+   *
+   *   P0    Phase 0    Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
+   *                    3D Printer to the same state it was in before the Unified Bed Leveling Compensation
+   *                    was turned on. Setting the entire Mesh to Zero is a special case that allows
+   *                    a subsequent G or T leveling operation for backward compatibility.
+   *
+   *   P1    Phase 1    Invalidate entire Mesh and continue with automatic generation of the Mesh data using
+   *                    the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
+   *                    DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
+   *                    generated. This will be handled in Phase 2. If the Phase 1 command is given the
+   *                    C (Continue) parameter it does not invalidate the Mesh prior to automatically
+   *                    probing needed locations. This allows you to invalidate portions of the Mesh but still
+   *                    use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
+   *                    parameter can be given to prioritize where the command should be trying to measure points.
+   *                    If the X and Y parameters are not specified the current probe position is used. Phase 1
+   *                    allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
+   *                    Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
+   *                    It will suspend generation of the Mesh if it sees the user request that. (This check is
+   *                    only done between probe points. You will need to press and hold the switch until the
+   *                    Phase 1 command can detect it.)
+   *
+   *   P2    Phase 2    Probe areas of the Mesh that can't be automatically handled. Phase 2 respects an H
+   *                    parameter to control the height between Mesh points. The default height for movement
+   *                    between Mesh points is 5mm. A smaller number can be used to make this part of the
+   *                    calibration less time consuming. You will be running the nozzle down until it just barely
+   *                    touches the glass. You should have the nozzle clean with no plastic obstructing your view.
+   *                    Use caution and move slowly. It is possible to damage your printer if you are careless.
+   *                    Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
+   *                    nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
+   *
+   *                    The H parameter can be set negative if your Mesh dips in a large area. You can press
+   *                    and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
+   *                    can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
+   *                    area you are manually probing. Note that the command tries to start you in a corner
+   *                    of the bed where movement will be predictable. You can force the location to be used in
+   *                    the distance calculations by using the X and Y parameters. You may find it is helpful to
+   *                    print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
+   *                    the nozzle will need to move in order to complete the command. The C parameter is
+   *                    available on the Phase 2 command also and indicates the search for points to measure should
+   *                    be done based on the current location of the nozzle.
+   *
+   *                    A B parameter is also available for this command and described up above. It places the
+   *                    manual probe subsystem into Business Card mode where the thickness of a business care is
+   *                    measured and then used to accurately set the nozzle height in all manual probing for the
+   *                    duration of the command. (S for Shim mode would be a better parameter name, but S is needed
+   *                    for Save or Store of the Mesh to EEPROM)  A Business card can be used, but you will have
+   *                    better results if you use a flexible Shim that does not compress very much. That makes it
+   *                    easier for you to get the nozzle to press with similar amounts of force against the shim so you
+   *                    can get accurate measurements. As you are starting to touch the nozzle against the shim try
+   *                    to get it to grasp the shim with the same force as when you measured the thickness of the
+   *                    shim at the start of the command.
+   *
+   *                    Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
+   *                    of the Mesh being built.
+   *
+   *   P3    Phase 3    Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is
+   *                    used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter
+   *                    is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
+   *                    of points to set. If the R parameter is specified the current nozzle position is used to
+   *                    find the closest points to alter unless the X and Y parameter are used to specify the fill
+   *                    location.
+   *
+   *   P4    Phase 4    Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
+   *                    an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
+   *                    (More work and details on doing this later!)
+   *                    The System will search for the closest Mesh Point to the nozzle. It will move the
+   *                    nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
+   *                    so it is just barely touching the bed. When the user clicks the control, the System
+   *                    will lock in that height for that point in the Mesh Compensation System.
+   *
+   *                    Phase 4 has several additional parameters that the user may find helpful. Phase 4
+   *                    can be started at a specific location by specifying an X and Y parameter. Phase 4
+   *                    can be requested to continue the adjustment of Mesh Points by using the R(epeat)
+   *                    parameter. If the Repetition count is not specified, it is assumed the user wishes
+   *                    to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
+   *                    The command can be terminated early (or after the area of interest has been edited) by
+   *                    pressing and holding the encoder wheel until the system recognizes the exit request.
+   *                    Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
+   *
+   *                    Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
+   *                    information left on the printer's bed from the G26 command it is very straight forward
+   *                    and easy to fine tune the Mesh. One concept that is important to remember and that
+   *                    will make using the Phase 4 command easy to use is this:  You are editing the Mesh Points.
+   *                    If you have too little clearance and not much plastic was extruded in an area, you want to
+   *                    LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
+   *                    RAISE the Mesh Point at that location.
+   *
+   *
+   *   P5    Phase 5    Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
+   *                    work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
+   *                    Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
+   *                    execute a G29 P6 C <mean height>.
+   *
+   *   P6    Phase 6    Shift Mesh height. The entire Mesh's height is adjusted by the height specified
+   *                    with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
+   *                    can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
+   *                    you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
+   *                    0.000 at the Z Home location.
+   *
+   *   Q     Test   *   Load specified Test Pattern to assist in checking correct operation of system. This
+   *                    command is not anticipated to be of much value to the typical user. It is intended
+   *                    for developers to help them verify correct operation of the Unified Bed Leveling System.
+   *
+   *   S     Store      Store the current Mesh in the Activated area of the EEPROM. It will also store the
+   *                    current state of the Unified Bed Leveling system in the EEPROM.
+   *
+   *   S #   Store      Store the current Mesh at the specified location in EEPROM. Activate this location
+   *                    for subsequent Load and Store operations. It will also store the current state of
+   *                    the Unified Bed Leveling system in the EEPROM.
+   *
+   *   S -1  Store      Store the current Mesh as a print out that is suitable to be feed back into
+   *                    the system at a later date. The text generated can be saved and later sent by PronterFace or
+   *                    Repetier Host to reconstruct the current mesh on another machine.
+   *
+   *   T     3-Point    Perform a 3 Point Bed Leveling on the current Mesh
+   *
+   *   U     Unlevel    Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
+   *                    Only used for G29 P1 O U   It will speed up the probing of the edge of the bed.  This
+   *                    is useful when the entire bed does not need to be probed because it will be adjusted.
+   *
+   *   W     What?      Display valuable data the Unified Bed Leveling System knows.
+   *
+   *   X #   *      *   X Location for this line of commands
+   *
+   *   Y #   *      *   Y Location for this line of commands
+   *
+   *   Z     Zero   *   Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
+   *                    by just doing a G29 Z
+   *
+   *   Z #   Zero   *   The entire Mesh can be raised or lowered to conform with the specified difference.
+   *                    zprobe_zoffset is added to the calculation.
+   *
+   *
+   *   Release Notes:
+   *   You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
+   *   kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
+   *   of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
+   *   respectively.)
+   *
+   *   When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
+   *   the Unified Bed Leveling probes points further and further away from the starting location. (The
+   *   starting location defaults to the center of the bed.)   The original Grid and Mesh leveling used
+   *   a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
+   *   allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
+   *   perform a small print and check out your settings quicker. You do not need to populate the
+   *   entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
+   *   you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
+   *   gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
+   *
+   *   The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
+   *   to get this Mesh data correct for a user's printer. We do not want this data destroyed as
+   *   new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
+   *   the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
+   *   other data stored in the EEPROM. (For sure the developers are going to complain about this, but
+   *   this is going to be helpful to the users!)
+   *
+   *   The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
+   *   'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
+   *   we now have the functionality and features of all three systems combined.
+   */
+
+  // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
+  static int g29_verbose_level, phase_value = -1, repetition_cnt,
+             storage_slot = 0, map_type; //unlevel_value = -1;
+  static bool repeat_flag, c_flag, x_flag, y_flag;
+  static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
+
+  #if ENABLED(ULTRA_LCD)
+    extern void lcd_setstatus(const char* message, const bool persist);
+    extern void lcd_setstatuspgm(const char* message, const uint8_t level);
+  #endif
+
+  void gcode_G29() {
+    SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
+    if (ubl.eeprom_start < 0) {
+      SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
+      SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
+      return;
+    }
+
+    if (!code_seen('N') && axis_unhomed_error(true, true, true))  // Don't allow auto-leveling without homing first
+      gcode_G28();
+
+    if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
+
+    // Invalidate Mesh Points. This command is a little bit asymetrical because
+    // it directly specifies the repetition count and does not use the 'R' parameter.
+    if (code_seen('I')) {
+      repetition_cnt = code_has_value() ? code_value_int() : 1;
+      while (repetition_cnt--) {
+        const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false);  // The '0' says we want to use the nozzle's position
+        if (location.x_index < 0) {
+          SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
+          break;            // No more invalid Mesh Points to populate
+        }
+        ubl.z_values[location.x_index][location.y_index] = NAN;
+      }
+      SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
+    }
+
+    if (code_seen('Q')) {
+
+      const int test_pattern = code_has_value() ? code_value_int() : -1;
+      if (!WITHIN(test_pattern, 0, 2)) {
+        SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
+        return;
+      }
+      SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
+      switch (test_pattern) {
+        case 0:
+          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {   // Create a bowl shape - similar to
+            for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
+              const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
+                          p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
+              ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
+            }
+          }
+          break;
+        case 1:
+          for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) {  // Create a diagonal line several Mesh cells thick that is raised
+            ubl.z_values[x][x] += 9.999;
+            ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
+          }
+          break;
+        case 2:
+          // Allow the user to specify the height because 10mm is a little extreme in some cases.
+          for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++)   // Create a rectangular raised area in
+            for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
+              ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
+          break;
+      }
+    }
+
+    /*
+    if (code_seen('U')) {
+      unlevel_value = code_value_int();
+      //if (!WITHIN(unlevel_value, 0, 7)) {
+      //  SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
+      //  return;
+      //}
+    }
+    //*/
+
+    if (code_seen('P')) {
+      phase_value = code_value_int();
+      if (!WITHIN(phase_value, 0, 7)) {
+        SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
+        return;
+      }
+      switch (phase_value) {
+        case 0:
+          //
+          // Zero Mesh Data
+          //
+          ubl.reset();
+          SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
+          break;
+
+        case 1:
+          //
+          // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
+          //
+          if (!code_seen('C') ) {
+            ubl.invalidate();
+            SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
+          }
+          if (g29_verbose_level > 1) {
+            SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
+            SERIAL_ECHO(x_pos);
+            SERIAL_ECHOPAIR(",", y_pos);
+            SERIAL_PROTOCOLLNPGM(")\n");
+          }
+          probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
+                            code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
+          break;
+
+        case 2: {
+          //
+          // Manually Probe Mesh in areas that can't be reached by the probe
+          //
+          SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
+          do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
+          if (!x_flag && !y_flag) {      // use a good default location for the path
+            x_pos = X_MIN_POS;
+            y_pos = Y_MIN_POS;
+            if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)   // The flipped > and < operators on these two comparisons is
+              x_pos = X_MAX_POS;                    // intentional. It should cause the probed points to follow a
+
+            if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)   // nice path on Cartesian printers. It may make sense to
+              y_pos = Y_MAX_POS;                    // have Delta printers default to the center of the bed.
+
+          }                                         // For now, until that is decided, it can be forced with the X
+                                                    // and Y parameters.
+          if (code_seen('C')) {
+            x_pos = current_position[X_AXIS];
+            y_pos = current_position[Y_AXIS];
+          }
+
+          const float height = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
+
+          if (code_seen('B')) {
+            card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
+
+            if (fabs(card_thickness) > 1.5) {
+              SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.\n");
+              return;
+            }
+          }
+          manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
+
+        } break;
+
+        case 3: {
+          //
+          // Populate invalid Mesh areas with a constant
+          //
+          const float height = code_seen('C') ? ubl_constant : 0.0;
+          // If no repetition is specified, do the whole Mesh
+          if (!repeat_flag) repetition_cnt = 9999;
+          while (repetition_cnt--) {
+            const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
+            if (location.x_index < 0) break; // No more invalid Mesh Points to populate
+            ubl.z_values[location.x_index][location.y_index] = height;
+          }
+        } break;
+
+        case 4:
+          //
+          // Fine Tune (i.e., Edit) the Mesh
+          //
+          fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
+          break;
+        case 5:
+          find_mean_mesh_height();
+          break;
+        case 6:
+          shift_mesh_height();
+          break;
+
+        case 10:
+          // [DEBUG] Pay no attention to this stuff. It can be removed soon.
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
+          KEEPALIVE_STATE(PAUSED_FOR_USER);
+          ubl.has_control_of_lcd_panel++;
+          while (!ubl_lcd_clicked()) {
+            safe_delay(250);
+            if (ubl.encoder_diff) {
+              SERIAL_ECHOLN((int)ubl.encoder_diff);
+              ubl.encoder_diff = 0;
+            }
+          }
+          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
+          ubl.has_control_of_lcd_panel = false;
+          KEEPALIVE_STATE(IN_HANDLER);
+          break;
+
+        case 11:
+          // [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
+          SERIAL_ECHO_START;
+          SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
+          KEEPALIVE_STATE(PAUSED_FOR_USER);
+          wait_for_user = true;
+          while (wait_for_user) {
+            safe_delay(250);
+            if (ubl.encoder_diff) {
+              SERIAL_ECHOLN((int)ubl.encoder_diff);
+              ubl.encoder_diff = 0;
+            }
+          }
+          SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
+          KEEPALIVE_STATE(IN_HANDLER);
+          break;
+      }
+    }
+
+    if (code_seen('T')) {
+      const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
+                  lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
+                  lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
+                  ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
+                  ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
+                  ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
+
+      float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
+            z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
+            z3 = probe_pt(lx3, ly3, true  /*Stow Flag*/, g29_verbose_level);
+
+      //  We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
+      //  the Mesh is tilted!  (We need to compensate each probe point by what the Mesh says that location's height is)
+
+      z1 -= ubl.get_z_correction(lx1, ly1);
+      z2 -= ubl.get_z_correction(lx2, ly2);
+      z3 -= ubl.get_z_correction(lx3, ly3);
+
+      do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
+      tilt_mesh_based_on_3pts(z1, z2, z3);
+    }
+
+    //
+    // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+    // good to have the extra information. Soon... we prune this to just a few items
+    //
+    if (code_seen('W')) g29_what_command();
+
+    //
+    // When we are fully debugged, the EEPROM dump command will get deleted also. But
+    // right now, it is good to have the extra information. Soon... we prune this.
+    //
+    if (code_seen('J')) g29_eeprom_dump();   // EEPROM Dump
+
+    //
+    // When we are fully debugged, this may go away. But there are some valid
+    // use cases for the users. So we can wait and see what to do with it.
+    //
+
+    if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
+      g29_compare_current_mesh_to_stored_mesh();
+
+    //
+    // Load a Mesh from the EEPROM
+    //
+
+    if (code_seen('L')) {     // Load Current Mesh Data
+      storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
+
+      const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
+
+      if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
+        SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+        return;
+      }
+      ubl.load_mesh(storage_slot);
+      ubl.state.eeprom_storage_slot = storage_slot;
+      if (storage_slot != ubl.state.eeprom_storage_slot)
+        ubl.store_state();
+      SERIAL_PROTOCOLLNPGM("Done.\n");
+    }
+
+    //
+    // Store a Mesh in the EEPROM
+    //
+
+    if (code_seen('S')) {     // Store (or Save) Current Mesh Data
+      storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
+
+      if (storage_slot == -1) {                     // Special case, we are going to 'Export' the mesh to the
+        SERIAL_ECHOLNPGM("G29 I 999");              // host in a form it can be reconstructed on a different machine
+        for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+          for (uint8_t y = 0;  y < UBL_MESH_NUM_Y_POINTS; y++)
+            if (!isnan(ubl.z_values[x][y])) {
+              SERIAL_ECHOPAIR("M421 I ", x);
+              SERIAL_ECHOPAIR(" J ", y);
+              SERIAL_ECHOPGM(" Z ");
+              SERIAL_ECHO_F(ubl.z_values[x][y], 6);
+              SERIAL_EOL;
+            }
+        return;
+      }
+
+      const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
+
+      if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
+        SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+        SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
+        goto LEAVE;
+      }
+      ubl.store_mesh(storage_slot);
+      ubl.state.eeprom_storage_slot = storage_slot;
+      //
+      //  if (storage_slot != ubl.state.eeprom_storage_slot)
+      ubl.store_state();    // Always save an updated copy of the UBL State info
+
+      SERIAL_PROTOCOLLNPGM("Done.\n");
+    }
+
+    if (code_seen('O') || code_seen('M'))
+      ubl.display_map(code_has_value() ? code_value_int() : 0);
+
+    if (code_seen('Z')) {
+      if (code_has_value())
+        ubl.state.z_offset = code_value_float();   // do the simple case. Just lock in the specified value
+      else {
+        save_ubl_active_state_and_disable();
+        //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
+
+        ubl.has_control_of_lcd_panel++;     // Grab the LCD Hardware
+        measured_z = 1.5;
+        do_blocking_move_to_z(measured_z);  // Get close to the bed, but leave some space so we don't damage anything
+                                            // The user is not going to be locking in a new Z-Offset very often so
+                                            // it won't be that painful to spin the Encoder Wheel for 1.5mm
+        lcd_implementation_clear();
+        lcd_z_offset_edit_setup(measured_z);
+
+        KEEPALIVE_STATE(PAUSED_FOR_USER);
+
+        do {
+          measured_z = lcd_z_offset_edit();
+          idle();
+          do_blocking_move_to_z(measured_z);
+        } while (!ubl_lcd_clicked());
+
+        ubl.has_control_of_lcd_panel++;   // There is a race condition for the Encoder Wheel getting clicked.
+                                          // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
+                                          // or here. So, until we are done looking for a long Encoder Wheel Press,
+                                          // we need to take control of the panel
+
+        KEEPALIVE_STATE(IN_HANDLER);
+
+        lcd_return_to_status();
+
+        const millis_t nxt = millis() + 1500UL;
+        while (ubl_lcd_clicked()) { // debounce and watch for abort
+          idle();
+          if (ELAPSED(millis(), nxt)) {
+            SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
+            do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+            lcd_setstatuspgm("Z-Offset Stopped");
+            restore_ubl_active_state_and_leave();
+            goto LEAVE;
+          }
+        }
+        ubl.has_control_of_lcd_panel = false;
+        safe_delay(20); // We don't want any switch noise.
+
+        ubl.state.z_offset = measured_z;
+
+        lcd_implementation_clear();
+        restore_ubl_active_state_and_leave();
+      }
+    }
+
+    LEAVE:
+
+    #if ENABLED(ULTRA_LCD)
+      lcd_reset_alert_level();
+      lcd_setstatuspgm("");
+      lcd_quick_feedback();
+    #endif
+
+    ubl.has_control_of_lcd_panel = false;
+  }
+
+  void find_mean_mesh_height() {
+    uint8_t x, y;
+    int n;
+    float sum, sum_of_diff_squared, sigma, difference, mean;
+
+    sum = sum_of_diff_squared = 0.0;
+    n = 0;
+    for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+      for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+        if (!isnan(ubl.z_values[x][y])) {
+          sum += ubl.z_values[x][y];
+          n++;
+        }
+
+    mean = sum / n;
+
+    //
+    // Now do the sumation of the squares of difference from mean
+    //
+    for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+      for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+        if (!isnan(ubl.z_values[x][y])) {
+          difference = (ubl.z_values[x][y] - mean);
+          sum_of_diff_squared += difference * difference;
+        }
+
+    SERIAL_ECHOLNPAIR("# of samples: ", n);
+    SERIAL_ECHOPGM("Mean Mesh Height: ");
+    SERIAL_ECHO_F(mean, 6);
+    SERIAL_EOL;
+
+    sigma = sqrt(sum_of_diff_squared / (n + 1));
+    SERIAL_ECHOPGM("Standard Deviation: ");
+    SERIAL_ECHO_F(sigma, 6);
+    SERIAL_EOL;
+
+    if (c_flag)
+      for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+        for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+          if (!isnan(ubl.z_values[x][y]))
+            ubl.z_values[x][y] -= mean + ubl_constant;
+  }
+
+  void shift_mesh_height() {
+    for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+      for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+        if (!isnan(ubl.z_values[x][y]))
+          ubl.z_values[x][y] += ubl_constant;
+  }
+
+  /**
+   * Probe all invalidated locations of the mesh that can be reached by the probe.
+   * This attempts to fill in locations closest to the nozzle's start location first.
+   */
+  void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
+    mesh_index_pair location;
+
+    ubl.has_control_of_lcd_panel++;
+    save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
+    DEPLOY_PROBE();
+
+    do {
+      if (ubl_lcd_clicked()) {
+        SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
+        lcd_quick_feedback();
+        STOW_PROBE();
+        while (ubl_lcd_clicked()) idle();
+        ubl.has_control_of_lcd_panel = false;
+        restore_ubl_active_state_and_leave();
+        safe_delay(50);  // Debounce the Encoder wheel
+        return;
+      }
+
+      location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest );  // the '1' says we want the location to be relative to the probe
+      if (location.x_index >= 0 && location.y_index >= 0) {
+
+        const float rawx = ubl.mesh_index_to_xpos[location.x_index],
+                    rawy = ubl.mesh_index_to_ypos[location.y_index];
+
+        // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
+        if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
+          SERIAL_ERROR_START;
+          SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
+          ubl.has_control_of_lcd_panel = false;
+          goto LEAVE;
+        }
+        const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
+        ubl.z_values[location.x_index][location.y_index] = measured_z;
+      }
+
+      if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+    } while (location.x_index >= 0 && location.y_index >= 0);
+
+    LEAVE:
+
+    STOW_PROBE();
+    restore_ubl_active_state_and_leave();
+
+    do_blocking_move_to_xy(
+      constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
+      constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
+    );
+  }
+
+  vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
+    float c, d, t;
+    int i, j;
+
+    vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
+                            (ubl_3_point_1_Y - ubl_3_point_2_Y),
+                            (z1 - z2) ),
+
+             v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
+                            (ubl_3_point_3_Y - ubl_3_point_2_Y),
+                            (z3 - z2) ),
+
+             normal = vector_3::cross(v1, v2);
+
+    // printf("[%f,%f,%f]    ", normal.x, normal.y, normal.z);
+
+    /**
+     * This code does two things. This vector is normal to the tilted plane.
+     * However, we don't know its direction. We need it to point up. So if
+     * Z is negative, we need to invert the sign of all components of the vector
+     * We also need Z to be unity because we are going to be treating this triangle
+     * as the sin() and cos() of the bed's tilt
+     */
+    const float inv_z = 1.0 / normal.z;
+    normal.x *= inv_z;
+    normal.y *= inv_z;
+    normal.z = 1.0;
+
+    //
+    // All of 3 of these points should give us the same d constant
+    //
+    t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
+    d = t + normal.z * z1;
+    c = d - t;
+    SERIAL_ECHOPGM("d from 1st point: ");
+    SERIAL_ECHO_F(d, 6);
+    SERIAL_ECHOPGM("  c: ");
+    SERIAL_ECHO_F(c, 6);
+    SERIAL_EOL;
+    t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
+    d = t + normal.z * z2;
+    c = d - t;
+    SERIAL_ECHOPGM("d from 2nd point: ");
+    SERIAL_ECHO_F(d, 6);
+    SERIAL_ECHOPGM("  c: ");
+    SERIAL_ECHO_F(c, 6);
+    SERIAL_EOL;
+    t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
+    d = t + normal.z * z3;
+    c = d - t;
+    SERIAL_ECHOPGM("d from 3rd point: ");
+    SERIAL_ECHO_F(d, 6);
+    SERIAL_ECHOPGM("  c: ");
+    SERIAL_ECHO_F(c, 6);
+    SERIAL_EOL;
+
+    for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+      for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+        c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
+        ubl.z_values[i][j] += c;
+      }
+    }
+    return normal;
+  }
+
+  float use_encoder_wheel_to_measure_point() {
+    KEEPALIVE_STATE(PAUSED_FOR_USER);
+    while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
+      idle();
+      if (ubl.encoder_diff) {
+        do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
+        ubl.encoder_diff = 0;
+      }
+    }
+    KEEPALIVE_STATE(IN_HANDLER);
+    return current_position[Z_AXIS];
+  }
+
+  float measure_business_card_thickness(const float &in_height) {
+
+    ubl.has_control_of_lcd_panel++;
+    save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
+
+    SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
+    do_blocking_move_to_z(in_height);
+    do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
+      //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
+
+    const float z1 = use_encoder_wheel_to_measure_point();
+    do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+    ubl.has_control_of_lcd_panel = false;
+
+    SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
+    const float z2 = use_encoder_wheel_to_measure_point();
+    do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+
+    if (g29_verbose_level > 1) {
+      SERIAL_PROTOCOLPGM("Business Card is: ");
+      SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
+      SERIAL_PROTOCOLLNPGM("mm thick.");
+    }
+    restore_ubl_active_state_and_leave();
+    return abs(z1 - z2);
+  }
+
+  void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
+
+    ubl.has_control_of_lcd_panel++;
+    save_ubl_active_state_and_disable();   // we don't do bed level correction because we want the raw data when we probe
+    do_blocking_move_to_z(z_clearance);
+    do_blocking_move_to_xy(lx, ly);
+
+    float last_x = -9999.99, last_y = -9999.99;
+    mesh_index_pair location;
+    do {
+      if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+      location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position
+      // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
+      if (location.x_index < 0 && location.y_index < 0) continue;
+
+      const float rawx = ubl.mesh_index_to_xpos[location.x_index],
+                  rawy = ubl.mesh_index_to_ypos[location.y_index];
+
+      // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
+      if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
+        SERIAL_ERROR_START;
+        SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
+        ubl.has_control_of_lcd_panel = false;
+        goto LEAVE;
+      }
+
+      const float xProbe = LOGICAL_X_POSITION(rawx),
+                  yProbe = LOGICAL_Y_POSITION(rawy),
+                  dx = xProbe - last_x,
+                  dy = yProbe - last_y;
+
+      if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
+        do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
+      else
+        do_blocking_move_to_z(z_clearance);
+
+      do_blocking_move_to_xy(xProbe, yProbe);
+
+      last_x = xProbe;
+      last_y = yProbe;
+
+      KEEPALIVE_STATE(PAUSED_FOR_USER);
+      ubl.has_control_of_lcd_panel = true;
+
+      while (!ubl_lcd_clicked()) {     // we need the loop to move the nozzle based on the encoder wheel here!
+        idle();
+        if (ubl.encoder_diff) {
+          do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
+          ubl.encoder_diff = 0;
+        }
+      }
+
+      const millis_t nxt = millis() + 1500L;
+      while (ubl_lcd_clicked()) {     // debounce and watch for abort
+        idle();
+        if (ELAPSED(millis(), nxt)) {
+          SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
+          do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+          lcd_quick_feedback();
+          while (ubl_lcd_clicked()) idle();
+          ubl.has_control_of_lcd_panel = false;
+          KEEPALIVE_STATE(IN_HANDLER);
+          restore_ubl_active_state_and_leave();
+          return;
+        }
+      }
+
+      ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
+      if (g29_verbose_level > 2) {
+        SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
+        SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
+        SERIAL_EOL;
+      }
+    } while (location.x_index >= 0 && location.y_index >= 0);
+
+    if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+    LEAVE:
+    restore_ubl_active_state_and_leave();
+    KEEPALIVE_STATE(IN_HANDLER);
+    do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+    do_blocking_move_to_xy(lx, ly);
+  }
+
+  bool g29_parameter_parsing() {
+    #if ENABLED(ULTRA_LCD)
+      lcd_setstatuspgm("Doing G29 UBL!");
+      lcd_quick_feedback();
+    #endif
+
+    g29_verbose_level = code_seen('V') ? code_value_int() : 0;
+    if (!WITHIN(g29_verbose_level, 0, 4)) {
+      SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
+      return UBL_ERR;
+    }
+
+    x_flag = code_seen('X') && code_has_value();
+    x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
+    if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
+      SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
+      return UBL_ERR;
+    }
+
+    y_flag = code_seen('Y') && code_has_value();
+    y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
+    if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
+      SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
+      return UBL_ERR;
+    }
+
+    if (x_flag != y_flag) {
+      SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
+      return UBL_ERR;
+    }
+
+    if (code_seen('A')) {     // Activate the Unified Bed Leveling System
+      ubl.state.active = 1;
+      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
+      ubl.store_state();
+    }
+
+    c_flag = code_seen('C') && code_has_value();
+    ubl_constant = c_flag ? code_value_float() : 0.0;
+
+    if (code_seen('D')) {     // Disable the Unified Bed Leveling System
+      ubl.state.active = 0;
+      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
+      ubl.store_state();
+    }
+
+    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+      if (code_seen('F') && code_has_value()) {
+        const float fh = code_value_float();
+        if (!WITHIN(fh, 0.0, 100.0)) {
+          SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
+          return UBL_ERR;
+        }
+        ubl.state.g29_correction_fade_height = fh;
+        ubl.state.g29_fade_height_multiplier = 1.0 / fh;
+      }
+    #endif
+
+    repeat_flag = code_seen('R');
+    repetition_cnt = repeat_flag ? (code_has_value() ? code_value_int() : 9999) : 1;
+    if (repetition_cnt < 1) {
+      SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
+      return UBL_ERR;
+    }
+
+    map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
+    if (!WITHIN(map_type, 0, 1)) {
+      SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
+      return UBL_ERR;
+    }
+
+    /*
+    if (code_seen('M')) {     // Check if a map type was specified
+      map_type = code_has_value() ? code_value_int() : 0;
+      if (!WITHIN(map_type, 0, 1)) {
+        SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
+        return UBL_ERR;
+      }
+    }
+    //*/
+
+    return UBL_OK;
+  }
+
+  /**
+   * This function goes away after G29 debug is complete. But for right now, it is a handy
+   * routine to dump binary data structures.
+   */
+  void dump(char * const str, const float &f) {
+    char *ptr;
+
+    SERIAL_PROTOCOL(str);
+    SERIAL_PROTOCOL_F(f, 8);
+    SERIAL_PROTOCOLPGM("  ");
+    ptr = (char*)&f;
+    for (uint8_t i = 0; i < 4; i++)
+      SERIAL_PROTOCOLPAIR("  ", hex_byte(*ptr++));
+    SERIAL_PROTOCOLPAIR("  isnan()=", isnan(f));
+    SERIAL_PROTOCOLPAIR("  isinf()=", isinf(f));
+
+    if (f == -INFINITY)
+      SERIAL_PROTOCOLPGM("  Minus Infinity detected.");
+
+    SERIAL_EOL;
+  }
+
+  static int ubl_state_at_invocation = 0,
+             ubl_state_recursion_chk = 0;
+
+  void save_ubl_active_state_and_disable() {
+    ubl_state_recursion_chk++;
+    if (ubl_state_recursion_chk != 1) {
+      SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
+      lcd_setstatuspgm("save_UBL_active() error");
+      lcd_quick_feedback();
+      return;
+    }
+    ubl_state_at_invocation = ubl.state.active;
+    ubl.state.active = 0;
+  }
+
+  void restore_ubl_active_state_and_leave() {
+    if (--ubl_state_recursion_chk) {
+      SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
+      lcd_setstatuspgm("restore_UBL_active() error");
+      lcd_quick_feedback();
+      return;
+    }
+    ubl.state.active = ubl_state_at_invocation;
+  }
+
+
+  /**
+   * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
+   * good to have the extra information. Soon... we prune this to just a few items
+   */
+  void g29_what_command() {
+    const uint16_t k = E2END - ubl.eeprom_start;
+
+    SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
+    if (ubl.state.active)
+      SERIAL_PROTOCOLCHAR('A');
+    else
+      SERIAL_PROTOCOLPGM("In");
+    SERIAL_PROTOCOLLNPGM("ctive.\n");
+    safe_delay(50);
+
+    if (ubl.state.eeprom_storage_slot == -1)
+      SERIAL_PROTOCOLPGM("No Mesh Loaded.");
+    else {
+      SERIAL_PROTOCOLPAIR("Mesh ", ubl.state.eeprom_storage_slot);
+      SERIAL_PROTOCOLPGM(" Loaded.");
+    }
+    SERIAL_EOL;
+    safe_delay(50);
+
+    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+      SERIAL_PROTOCOLLNPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height);
+    #endif
+
+    SERIAL_PROTOCOLPGM("z_offset: ");
+    SERIAL_PROTOCOL_F(ubl.state.z_offset, 6);
+    SERIAL_EOL;
+    safe_delay(50);
+
+    SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
+    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+      SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
+      SERIAL_PROTOCOLPGM("  ");
+      safe_delay(50);
+    }
+    SERIAL_EOL;
+
+    SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
+    for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
+      SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
+      SERIAL_PROTOCOLPGM("  ");
+      safe_delay(50);
+    }
+    SERIAL_EOL;
+
+    #if HAS_KILL
+      SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
+      SERIAL_PROTOCOLLNPAIR("  state:", READ(KILL_PIN));
+    #endif
+    SERIAL_EOL;
+    safe_delay(50);
+
+    SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
+    SERIAL_EOL;
+    SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
+    SERIAL_EOL;
+    safe_delay(50);
+    SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
+
+    SERIAL_PROTOCOLLNPAIR("end of EEPROM              : 0x", hex_word(E2END));
+    safe_delay(50);
+
+    SERIAL_PROTOCOLLNPAIR("sizeof(ubl) :  ", (int)sizeof(ubl));
+    SERIAL_EOL;
+    SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
+    SERIAL_EOL;
+    safe_delay(50);
+
+    SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
+    safe_delay(50);
+
+    SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
+    SERIAL_PROTOCOLLNPGM(" meshes.\n");
+    safe_delay(50);
+
+    SERIAL_PROTOCOLPAIR("sizeof(ubl.state) : ", (int)sizeof(ubl.state));
+
+    SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS  ", UBL_MESH_NUM_X_POINTS);
+    SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS  ", UBL_MESH_NUM_Y_POINTS);
+    safe_delay(50);
+    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X         ", UBL_MESH_MIN_X);
+    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y         ", UBL_MESH_MIN_Y);
+    safe_delay(50);
+    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X         ", UBL_MESH_MAX_X);
+    SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y         ", UBL_MESH_MAX_Y);
+    safe_delay(50);
+    SERIAL_PROTOCOLPGM("\nMESH_X_DIST        ");
+    SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
+    SERIAL_PROTOCOLPGM("\nMESH_Y_DIST        ");
+    SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
+    SERIAL_EOL;
+    safe_delay(50);
+
+    if (!ubl.sanity_check())
+      SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
+  }
+
+  /**
+   * When we are fully debugged, the EEPROM dump command will get deleted also. But
+   * right now, it is good to have the extra information. Soon... we prune this.
+   */
+  void g29_eeprom_dump() {
+    unsigned char cccc;
+    uint16_t kkkk;
+
+    SERIAL_ECHO_START;
+    SERIAL_ECHOLNPGM("EEPROM Dump:");
+    for (uint16_t i = 0; i < E2END + 1; i += 16) {
+      if (!(i & 0x3)) idle();
+      print_hex_word(i);
+      SERIAL_ECHOPGM(": ");
+      for (uint16_t j = 0; j < 16; j++) {
+        kkkk = i + j;
+        eeprom_read_block(&cccc, (void *)kkkk, 1);
+        print_hex_byte(cccc);
+        SERIAL_ECHO(' ');
+      }
+      SERIAL_EOL;
+    }
+    SERIAL_EOL;
+  }
+
+  /**
+   * When we are fully debugged, this may go away. But there are some valid
+   * use cases for the users. So we can wait and see what to do with it.
+   */
+  void g29_compare_current_mesh_to_stored_mesh() {
+    float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
+
+    if (!code_has_value()) {
+      SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
+      return;
+    }
+    storage_slot = code_value_int();
+
+    int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
+
+    if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
+      SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
+      return;
+    }
+
+    j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values);
+    eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
+
+    SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
+    SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
+                                                                        // the address in the EEPROM where the Mesh is stored.
+
+    for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
+      for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
+        ubl.z_values[x][y] -= tmp_z_values[x][y];
+  }
+
+  mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
+    float distance, closest = far_flag ? -99999.99 : 99999.99;
+    mesh_index_pair return_val;
+
+    return_val.x_index = return_val.y_index = -1;
+
+    const float current_x = current_position[X_AXIS],
+                current_y = current_position[Y_AXIS];
+
+    // Get our reference position. Either the nozzle or probe location.
+    const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
+                py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
+
+    for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
+      for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
+
+        if ( (type == INVALID && isnan(ubl.z_values[i][j]))  // Check to see if this location holds the right thing
+          || (type == REAL && !isnan(ubl.z_values[i][j]))
+          || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
+        ) {
+
+          // We only get here if we found a Mesh Point of the specified type
+
+          const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
+                      rawy = ubl.mesh_index_to_ypos[j];
+
+          // If using the probe as the reference there are some unreachable locations.
+          // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
+
+          if (probe_as_reference &&
+            (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
+          ) continue;
+
+          // Unreachable. Check if it's the closest location to the nozzle.
+          // Add in a weighting factor that considers the current location of the nozzle.
+
+          const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
+                      my = LOGICAL_Y_POSITION(rawy);
+
+          distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
+
+          if (far_flag) {                                           // If doing the far_flag action, we want to be as far as possible
+            for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) {   // from the starting point and from any other probed points.  We
+              for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
+                if (!isnan(ubl.z_values[k][l])) {                       // in the mesh. So we add in some of the distance to every probed
+                  distance += sq(i - k) * (MESH_X_DIST) * .05       // point we can find.
+                            + sq(j - l) * (MESH_Y_DIST) * .05;
+                }
+              }
+            }
+          }
+
+          if (far_flag == (distance > closest) && distance != closest) {  // if far_flag, look for farthest point
+            closest = distance;       // We found a closer/farther location with
+            return_val.x_index = i;   // the specified type of mesh value.
+            return_val.y_index = j;
+            return_val.distance = closest;
+          }
+        }
+      } // for j
+    } // for i
+
+    return return_val;
+  }
+
+  void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
+    mesh_index_pair location;
+    uint16_t not_done[16];
+    int32_t round_off;
+
+    save_ubl_active_state_and_disable();
+    memset(not_done, 0xFF, sizeof(not_done));
+
+    #if ENABLED(ULTRA_LCD)
+      lcd_setstatuspgm("Fine Tuning Mesh");
+    #endif
+
+    do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+    do_blocking_move_to_xy(lx, ly);
+    do {
+      if (do_ubl_mesh_map) ubl.display_map(map_type);
+
+      location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx,  ly, 0, not_done, false); // The '0' says we want to use the nozzle's position
+                                                                                              // It doesn't matter if the probe can not reach this
+                                                                                              // location. This is a manual edit of the Mesh Point.
+      if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
+
+      bit_clear(not_done, location.x_index, location.y_index);  // Mark this location as 'adjusted' so we will find a
+                                                                // different location the next time through the loop
+
+      const float rawx = ubl.mesh_index_to_xpos[location.x_index],
+                  rawy = ubl.mesh_index_to_ypos[location.y_index];
+
+      // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
+      if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
+        SERIAL_ERROR_START;
+        SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
+        ubl.has_control_of_lcd_panel = false;
+        goto FINE_TUNE_EXIT;
+      }
+
+      do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);    // Move the nozzle to where we are going to edit
+      do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
+
+      float new_z = ubl.z_values[location.x_index][location.y_index];
+
+      round_off = (int32_t)(new_z * 1000.0);    // we chop off the last digits just to be clean. We are rounding to the
+      new_z = float(round_off) / 1000.0;
+
+      KEEPALIVE_STATE(PAUSED_FOR_USER);
+      ubl.has_control_of_lcd_panel = true;
+
+      lcd_implementation_clear();
+      lcd_mesh_edit_setup(new_z);
+
+      do {
+        new_z = lcd_mesh_edit();
+        idle();
+      } while (!ubl_lcd_clicked());
+
+      lcd_return_to_status();
+
+      ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
+                                           // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
+                                           // or here.
+
+      const millis_t nxt = millis() + 1500UL;
+      while (ubl_lcd_clicked()) { // debounce and watch for abort
+        idle();
+        if (ELAPSED(millis(), nxt)) {
+          lcd_return_to_status();
+          //SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
+          do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+          lcd_setstatuspgm("Mesh Editing Stopped");
+
+          while (ubl_lcd_clicked()) idle();
+
+          goto FINE_TUNE_EXIT;
+        }
+      }
+
+      safe_delay(20);                       // We don't want any switch noise.
+
+      ubl.z_values[location.x_index][location.y_index] = new_z;
+
+      lcd_implementation_clear();
+
+    } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt);
+
+    FINE_TUNE_EXIT:
+
+    ubl.has_control_of_lcd_panel = false;
+    KEEPALIVE_STATE(IN_HANDLER);
+
+    if (do_ubl_mesh_map) ubl.display_map(map_type);
+    restore_ubl_active_state_and_leave();
+    do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
+
+    do_blocking_move_to_xy(lx, ly);
+
+    #if ENABLED(ULTRA_LCD)
+      lcd_setstatuspgm("Done Editing Mesh");
+    #endif
+    SERIAL_ECHOLNPGM("Done Editing Mesh");
+  }
+
 #endif // AUTO_BED_LEVELING_UBL
\ No newline at end of file
diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp
index f3bfc7fa7bf6f59aef087a64b8e6b20e2fee7d1b..5a37c775098a79c951636de8b4ac3021120efe49 100644
--- a/Marlin/temperature.cpp
+++ b/Marlin/temperature.cpp
@@ -104,12 +104,12 @@ uint8_t Temperature::soft_pwm_bed;
   volatile int Temperature::babystepsTodo[XYZ] = { 0 };
 #endif
 
-#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+#if WATCH_HOTENDS
   int Temperature::watch_target_temp[HOTENDS] = { 0 };
   millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
 #endif
 
-#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+#if WATCH_THE_BED
   int Temperature::watch_target_bed_temp = 0;
   millis_t Temperature::watch_bed_next_ms = 0;
 #endif
@@ -690,7 +690,7 @@ void Temperature::manage_heater() {
     if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
   #endif
 
-  #if (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0) || (ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0) || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
+  #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
     millis_t ms = millis();
   #endif
 
@@ -707,7 +707,7 @@ void Temperature::manage_heater() {
     soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
 
     // Check if the temperature is failing to increase
-    #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+    #if WATCH_HOTENDS
 
       // Is it time to check this extruder's heater?
       if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
@@ -725,7 +725,7 @@ void Temperature::manage_heater() {
     #endif // THERMAL_PROTECTION_HOTENDS
 
     // Check if the temperature is failing to increase
-    #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+    #if WATCH_THE_BED
 
       // Is it time to check the bed?
       if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
@@ -1157,7 +1157,7 @@ void Temperature::init() {
   #endif //BED_MAXTEMP
 }
 
-#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+#if WATCH_HOTENDS
   /**
    * Start Heating Sanity Check for hotends that are below
    * their target temperature by a configurable margin.
@@ -1176,7 +1176,7 @@ void Temperature::init() {
   }
 #endif
 
-#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+#if WATCH_THE_BED
   /**
    * Start Heating Sanity Check for hotends that are below
    * their target temperature by a configurable margin.
diff --git a/Marlin/temperature.h b/Marlin/temperature.h
index d6451554fc369650e9bdad156e2073ff57087d5c..09cf44bd22ba4d310b54537ecb3b5a1838d24069 100644
--- a/Marlin/temperature.h
+++ b/Marlin/temperature.h
@@ -113,12 +113,12 @@ class Temperature {
       static volatile int babystepsTodo[3];
     #endif
 
-    #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+    #if WATCH_HOTENDS
       static int watch_target_temp[HOTENDS];
       static millis_t watch_heater_next_ms[HOTENDS];
     #endif
 
-    #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+    #if WATCH_THE_BED
       static int watch_target_bed_temp;
       static millis_t watch_bed_next_ms;
     #endif
@@ -306,11 +306,11 @@ class Temperature {
     }
     static float degTargetBed() { return target_temperature_bed; }
 
-    #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+    #if WATCH_HOTENDS
       static void start_watching_heater(uint8_t e = 0);
     #endif
 
-    #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+    #if WATCH_THE_BED
       static void start_watching_bed();
     #endif
 
@@ -325,14 +325,14 @@ class Temperature {
           start_preheat_time(HOTEND_INDEX);
       #endif
       target_temperature[HOTEND_INDEX] = celsius;
-      #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+      #if WATCH_HOTENDS
         start_watching_heater(HOTEND_INDEX);
       #endif
     }
 
     static void setTargetBed(const float& celsius) {
       target_temperature_bed = celsius;
-      #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
+      #if WATCH_THE_BED
         start_watching_bed();
       #endif
     }
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index 1065d6aa956949cc4a8eb7ddfba110aabc60c7fc..3988facf2fcaa21b21c9bb3ee9382caaf947cd0a 100755
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -918,7 +918,7 @@ void kill_screen(const char* lcd_msg) {
   /**
    * Watch temperature callbacks
    */
-  #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
+  #if WATCH_HOTENDS
     #if TEMP_SENSOR_0 != 0
       void watch_temp_callback_E0() { thermalManager.start_watching_heater(0); }
     #endif
@@ -946,14 +946,8 @@ void kill_screen(const char* lcd_msg) {
     #endif // HOTENDS > 3
   #endif
 
-  #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
-    #if TEMP_SENSOR_BED != 0
-      void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
-    #endif
-  #else
-    #if TEMP_SENSOR_BED != 0
-      void watch_temp_callback_bed() {}
-    #endif
+  #if WATCH_THE_BED
+    void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
   #endif
 
   #if ENABLED(FILAMENT_CHANGE_FEATURE)
@@ -1021,7 +1015,7 @@ void kill_screen(const char* lcd_msg) {
     //
     // Bed:
     //
-    #if TEMP_SENSOR_BED != 0
+    #if WATCH_THE_BED
       MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
     #endif
 
@@ -2180,7 +2174,7 @@ void kill_screen(const char* lcd_msg) {
     //
     // Bed:
     //
-    #if TEMP_SENSOR_BED != 0
+    #if WATCH_THE_BED
       MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
     #endif