diff --git a/Marlin/Configuration.h b/Marlin/Configuration.h
index e2d5cb077862f156adfbb510a4b87f64fa726556..65c4f32a3c65758d9a67ce4a2d33cfe1676afcfc 100644
--- a/Marlin/Configuration.h
+++ b/Marlin/Configuration.h
@@ -1,245 +1,248 @@
-#ifndef CONFIGURATION_H


-#define CONFIGURATION_H


-


-//#define DEBUG_STEPS


-


-// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration


-


-//// The following define selects which electronics board you have. Please choose the one that matches your setup


-// MEGA/RAMPS up to 1.2 = 3,


-// RAMPS 1.3 = 33


-// Gen6 = 5,


-// Sanguinololu 1.2 and above = 62


-// Ultimaker = 7,


-#define MOTHERBOARD 7


-//#define MOTHERBOARD 5


-


-


-//// Thermistor settings:


-// 1 is 100k thermistor


-// 2 is 200k thermistor


-// 3 is mendel-parts thermistor


-// 4 is 10k thermistor


-// 5 is ParCan supplied 104GT-2 100K


-// 6 is EPCOS 100k


-// 7 is 100k Honeywell thermistor 135-104LAG-J01


-#define THERMISTORHEATER_1 3


-#define THERMISTORHEATER_2 3


-#define THERMISTORBED 3


-


-//#define HEATER_0_USES_THERMISTOR


-//#define HEATER_1_USES_THERMISTOR


-#define HEATER_0_USES_AD595


-//#define HEATER_1_USES_AD595


-


-// Select one of these only to define how the bed temp is read.


-//#define BED_USES_THERMISTOR


-//#define BED_USES_AD595


-


-#define HEATER_CHECK_INTERVAL 50


-#define BED_CHECK_INTERVAL 5000


-


-


-//// Endstop Settings


-#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors


-// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.


-const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. 


-// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false


-


-// This determines the communication speed of the printer


-#define BAUDRATE 250000


-//#define BAUDRATE 115200


-//#define BAUDRATE 230400


-


-// Comment out (using // at the start of the line) to disable SD support:


-


-// #define ULTRA_LCD  //any lcd 


-


-#define ULTIPANEL


-#define ULTIPANEL


-#ifdef ULTIPANEL


- //#define NEWPANEL  //enable this if you have a click-encoder panel


- #define SDSUPPORT


- #define ULTRA_LCD


- #define LCD_WIDTH 20


-#define LCD_HEIGHT 4


-#else //no panel but just lcd 


-  #ifdef ULTRA_LCD


-    #define LCD_WIDTH 16


-    #define LCD_HEIGHT 2


-  #endif


-#endif


-


-


-//#define SDSUPPORT // Enable SD Card Support in Hardware Console


-


-


-


-const int dropsegments=5; //everything with this number of steps  will be ignored as move


-


-//// ADVANCED SETTINGS - to tweak parameters


-


-#include "thermistortables.h"


-


-// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1


-#define X_ENABLE_ON 0


-#define Y_ENABLE_ON 0


-#define Z_ENABLE_ON 0


-#define E_ENABLE_ON 0


-


-// Disables axis when it's not being used.


-#define DISABLE_X false


-#define DISABLE_Y false


-#define DISABLE_Z false


-#define DISABLE_E false


-


-// Inverting axis direction


-#define INVERT_X_DIR true    // for Mendel set to false, for Orca set to true


-#define INVERT_Y_DIR false   // for Mendel set to true, for Orca set to false


-#define INVERT_Z_DIR true    // for Mendel set to false, for Orca set to true


-#define INVERT_E_DIR false   // for direct drive extruder v9 set to true, for geared extruder set to false


-


-//// ENDSTOP SETTINGS:


-// Sets direction of endstops when homing; 1=MAX, -1=MIN


-#define X_HOME_DIR -1


-#define Y_HOME_DIR -1


-#define Z_HOME_DIR -1


-


-#define min_software_endstops false //If true, axis won't move to coordinates less than zero.


-#define max_software_endstops false  //If true, axis won't move to coordinates greater than the defined lengths below.


-#define X_MAX_LENGTH 210


-#define Y_MAX_LENGTH 210


-#define Z_MAX_LENGTH 210


-


-//// MOVEMENT SETTINGS


-#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E


-//note: on bernhards ultimaker 200 200 12 are working well.


-#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0}  // set the homing speeds


-//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed. 


-//!!!!!!Use only if you know that your printer works at the maximum declared speeds.


-// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze


-#define TRAVELING_AT_MAXSPEED  


-#define AXIS_RELATIVE_MODES {false, false, false, false}


-


-#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)


-


-// default settings 


-


-#define DEFAULT_AXIS_STEPS_PER_UNIT   {79.87220447,79.87220447,200*8/3,14}                    // default steps per unit for ultimaker 


-#define DEFAULT_MAX_FEEDRATE          {160*60, 160*60, 10*60, 500000}        


-#define DEFAULT_MAX_ACCELERATION      {9000,9000,150,10000}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.


-


-#define DEFAULT_ACCELERATION          3000    // X, Y, Z and E max acceleration in mm/s^2 for printing moves 


-#define DEFAULT_RETRACT_ACCELERATION  7000   // X, Y, Z and E max acceleration in mm/s^2 for r retracts


-


-#define DEFAULT_MINIMUMFEEDRATE       10     // minimum feedrate


-#define DEFAULT_MINTRAVELFEEDRATE     10


-


-// minimum time in microseconds that a movement needs to take if the buffer is emptied.   Increase this number if you see blobs while printing high speed & high detail.  It will slowdown on the detailed stuff.


-#define DEFAULT_MINSEGMENTTIME        20000


-#define DEFAULT_XYJERK                30.0*60    


-#define DEFAULT_ZJERK                 10.0*60


-


-


-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature


-//this enables the watchdog interrupt.


-#define USE_WATCHDOG


-//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:


-#define RESET_MANUAL


-


-#define WATCHDOG_TIMEOUT 4


-


-


-


-//// Experimental watchdog and minimal temp


-// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature


-// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109


-//#define WATCHPERIOD 5000 //5 seconds


-


-// Actual temperature must be close to target for this long before M109 returns success


-//#define TEMP_RESIDENCY_TIME 20  // (seconds)


-//#define TEMP_HYSTERESIS 5       // (C°) range of +/- temperatures considered "close" to the target one


-


-//// The minimal temperature defines the temperature below which the heater will not be enabled


-#define HEATER_0_MINTEMP 5


-//#define HEATER_1_MINTEMP 5


-//#define BED_MINTEMP 5


-


-


-// When temperature exceeds max temp, your heater will be switched off.


-// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!


-// You should use MINTEMP for thermistor short/failure protection.


-#define HEATER_0_MAXTEMP 275


-//#define_HEATER_1_MAXTEMP 275


-//#define BED_MAXTEMP 150


-


-


-


-


-


-


-


-#define PIDTEMP


-#ifdef PIDTEMP


-  /// PID settings:


-  // Uncomment the following line to enable PID support.


-  //#define SMOOTHING


-  //#define SMOOTHFACTOR 5.0


-  //float current_raw_average=0;


-    #define K1 0.95 //smoothing of the PID


-  //#define PID_DEBUG // Sends debug data to the serial port. 


-  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %


-  #define PID_MAX 255 // limits current to nozzle


-  #define PID_INTEGRAL_DRIVE_MAX 255


-  #define PID_dT 0.1


- //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47


-


-  #define PID_CRITIAL_GAIN 3000


-  #define PID_SWING_AT_CRITIAL 45 //seconds


-  #define PIDIADD 5


-  /*


-  //PID according to Ziegler-Nichols method


-  float Kp = 0.6*PID_CRITIAL_GAIN; 


-  float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;  


-  float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;  


-  */


-  //PI according to Ziegler-Nichols method


-  #define  DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) 


-  #define  DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)


-  #define  DEFAULT_Kd (0)


-  


-  #define PID_ADD_EXTRUSION_RATE  


-  #ifdef PID_ADD_EXTRUSION_RATE


-    #define  DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)


-  #endif


-#endif // PIDTEMP


-


-// extruder advance constant (s2/mm3)


-//


-// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2


-//


-// hooke's law says:		force = k * distance


-// bernoulli's priniciple says:	v ^ 2 / 2 + g . h + pressure / density = constant


-// so: v ^ 2 is proportional to number of steps we advance the extruder


-//#define ADVANCE


-


-#ifdef ADVANCE


-#define EXTRUDER_ADVANCE_K .3


-


-#define D_FILAMENT 1.7


-#define STEPS_MM_E 65


-#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)


-#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)


-


-#endif // ADVANCE


-


-// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32 


-#if defined SDSUPPORT


-// The number of linear motions that can be in the plan at any give time.  


-  #define BLOCK_BUFFER_SIZE 16   // SD,LCD,Buttons take more memory, block buffer needs to be smaller


-#else


-  #define BLOCK_BUFFER_SIZE 16 // maximize block buffer


-#endif


-


-


-#endif


+#ifndef CONFIGURATION_H
+#define CONFIGURATION_H
+
+//#define DEBUG_STEPS
+
+#define MM_PER_ARC_SEGMENT 1
+#define N_ARC_CORRECTION 25
+
+// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
+
+//// The following define selects which electronics board you have. Please choose the one that matches your setup
+// MEGA/RAMPS up to 1.2 = 3,
+// RAMPS 1.3 = 33
+// Gen6 = 5,
+// Sanguinololu 1.2 and above = 62
+// Ultimaker = 7,
+#define MOTHERBOARD 7
+//#define MOTHERBOARD 5
+
+
+//// Thermistor settings:
+// 1 is 100k thermistor
+// 2 is 200k thermistor
+// 3 is mendel-parts thermistor
+// 4 is 10k thermistor
+// 5 is ParCan supplied 104GT-2 100K
+// 6 is EPCOS 100k
+// 7 is 100k Honeywell thermistor 135-104LAG-J01
+#define THERMISTORHEATER_1 3
+#define THERMISTORHEATER_2 3
+#define THERMISTORBED 3
+
+//#define HEATER_0_USES_THERMISTOR
+//#define HEATER_1_USES_THERMISTOR
+#define HEATER_0_USES_AD595
+//#define HEATER_1_USES_AD595
+
+// Select one of these only to define how the bed temp is read.
+//#define BED_USES_THERMISTOR
+//#define BED_USES_AD595
+
+#define HEATER_CHECK_INTERVAL 50
+#define BED_CHECK_INTERVAL 5000
+
+
+//// Endstop Settings
+#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
+// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
+const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. 
+// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
+
+// This determines the communication speed of the printer
+#define BAUDRATE 250000
+//#define BAUDRATE 115200
+//#define BAUDRATE 230400
+
+// Comment out (using // at the start of the line) to disable SD support:
+
+// #define ULTRA_LCD  //any lcd 
+
+#define ULTIPANEL
+#define ULTIPANEL
+#ifdef ULTIPANEL
+ //#define NEWPANEL  //enable this if you have a click-encoder panel
+ #define SDSUPPORT
+ #define ULTRA_LCD
+ #define LCD_WIDTH 20
+#define LCD_HEIGHT 4
+#else //no panel but just lcd 
+  #ifdef ULTRA_LCD
+    #define LCD_WIDTH 16
+    #define LCD_HEIGHT 2
+  #endif
+#endif
+
+
+//#define SDSUPPORT // Enable SD Card Support in Hardware Console
+
+
+
+const int dropsegments=5; //everything with this number of steps  will be ignored as move
+
+//// ADVANCED SETTINGS - to tweak parameters
+
+#include "thermistortables.h"
+
+// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
+#define X_ENABLE_ON 0
+#define Y_ENABLE_ON 0
+#define Z_ENABLE_ON 0
+#define E_ENABLE_ON 0
+
+// Disables axis when it's not being used.
+#define DISABLE_X false
+#define DISABLE_Y false
+#define DISABLE_Z false
+#define DISABLE_E false
+
+// Inverting axis direction
+#define INVERT_X_DIR true    // for Mendel set to false, for Orca set to true
+#define INVERT_Y_DIR false   // for Mendel set to true, for Orca set to false
+#define INVERT_Z_DIR true    // for Mendel set to false, for Orca set to true
+#define INVERT_E_DIR false   // for direct drive extruder v9 set to true, for geared extruder set to false
+
+//// ENDSTOP SETTINGS:
+// Sets direction of endstops when homing; 1=MAX, -1=MIN
+#define X_HOME_DIR -1
+#define Y_HOME_DIR -1
+#define Z_HOME_DIR -1
+
+#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
+#define max_software_endstops false  //If true, axis won't move to coordinates greater than the defined lengths below.
+#define X_MAX_LENGTH 210
+#define Y_MAX_LENGTH 210
+#define Z_MAX_LENGTH 210
+
+//// MOVEMENT SETTINGS
+#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
+//note: on bernhards ultimaker 200 200 12 are working well.
+#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0}  // set the homing speeds
+//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed. 
+//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
+// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
+#define TRAVELING_AT_MAXSPEED  
+#define AXIS_RELATIVE_MODES {false, false, false, false}
+
+#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
+
+// default settings 
+
+#define DEFAULT_AXIS_STEPS_PER_UNIT   {79.87220447,79.87220447,200*8/3,14}                    // default steps per unit for ultimaker 
+#define DEFAULT_MAX_FEEDRATE          {160*60, 160*60, 10*60, 500000}        
+#define DEFAULT_MAX_ACCELERATION      {9000,9000,150,10000}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
+
+#define DEFAULT_ACCELERATION          3000    // X, Y, Z and E max acceleration in mm/s^2 for printing moves 
+#define DEFAULT_RETRACT_ACCELERATION  7000   // X, Y, Z and E max acceleration in mm/s^2 for r retracts
+
+#define DEFAULT_MINIMUMFEEDRATE       10     // minimum feedrate
+#define DEFAULT_MINTRAVELFEEDRATE     10
+
+// minimum time in microseconds that a movement needs to take if the buffer is emptied.   Increase this number if you see blobs while printing high speed & high detail.  It will slowdown on the detailed stuff.
+#define DEFAULT_MINSEGMENTTIME        20000
+#define DEFAULT_XYJERK                30.0*60    
+#define DEFAULT_ZJERK                 10.0*60
+
+
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+//this enables the watchdog interrupt.
+#define USE_WATCHDOG
+//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
+#define RESET_MANUAL
+
+#define WATCHDOG_TIMEOUT 4
+
+
+
+//// Experimental watchdog and minimal temp
+// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
+// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
+//#define WATCHPERIOD 5000 //5 seconds
+
+// Actual temperature must be close to target for this long before M109 returns success
+//#define TEMP_RESIDENCY_TIME 20  // (seconds)
+//#define TEMP_HYSTERESIS 5       // (C°) range of +/- temperatures considered "close" to the target one
+
+//// The minimal temperature defines the temperature below which the heater will not be enabled
+#define HEATER_0_MINTEMP 5
+//#define HEATER_1_MINTEMP 5
+//#define BED_MINTEMP 5
+
+
+// When temperature exceeds max temp, your heater will be switched off.
+// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
+// You should use MINTEMP for thermistor short/failure protection.
+#define HEATER_0_MAXTEMP 275
+//#define_HEATER_1_MAXTEMP 275
+//#define BED_MAXTEMP 150
+
+
+
+
+
+
+
+#define PIDTEMP
+#ifdef PIDTEMP
+  /// PID settings:
+  // Uncomment the following line to enable PID support.
+  //#define SMOOTHING
+  //#define SMOOTHFACTOR 5.0
+  //float current_raw_average=0;
+    #define K1 0.95 //smoothing of the PID
+  //#define PID_DEBUG // Sends debug data to the serial port. 
+  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
+  #define PID_MAX 255 // limits current to nozzle
+  #define PID_INTEGRAL_DRIVE_MAX 255
+  #define PID_dT 0.1
+ //machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
+
+  #define PID_CRITIAL_GAIN 3000
+  #define PID_SWING_AT_CRITIAL 45 //seconds
+  #define PIDIADD 5
+  /*
+  //PID according to Ziegler-Nichols method
+  float Kp = 0.6*PID_CRITIAL_GAIN; 
+  float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;  
+  float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;  
+  */
+  //PI according to Ziegler-Nichols method
+  #define  DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) 
+  #define  DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
+  #define  DEFAULT_Kd (0)
+  
+  #define PID_ADD_EXTRUSION_RATE  
+  #ifdef PID_ADD_EXTRUSION_RATE
+    #define  DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
+  #endif
+#endif // PIDTEMP
+
+// extruder advance constant (s2/mm3)
+//
+// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
+//
+// hooke's law says:		force = k * distance
+// bernoulli's priniciple says:	v ^ 2 / 2 + g . h + pressure / density = constant
+// so: v ^ 2 is proportional to number of steps we advance the extruder
+//#define ADVANCE
+
+#ifdef ADVANCE
+#define EXTRUDER_ADVANCE_K .3
+
+#define D_FILAMENT 1.7
+#define STEPS_MM_E 65
+#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
+#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
+
+#endif // ADVANCE
+
+// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32 
+#if defined SDSUPPORT
+// The number of linear motions that can be in the plan at any give time.  
+  #define BLOCK_BUFFER_SIZE 16   // SD,LCD,Buttons take more memory, block buffer needs to be smaller
+#else
+  #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
+#endif
+
+
+#endif
diff --git a/Marlin/Marlin.pde b/Marlin/Marlin.pde
index 7615cccf828b43e4e6fdf1bd774d145a6f73d9bc..92907a2d240c75cf55884ab1b033d3533daa0d93 100644
--- a/Marlin/Marlin.pde
+++ b/Marlin/Marlin.pde
@@ -1,1235 +1,1372 @@
-/*
-    Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- 
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
- 
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- GNU General Public License for more details.
- 
- You should have received a copy of the GNU General Public License
- along with this program.  If not, see <http://www.gnu.org/licenses/>.
- */
+/*
+    Reprap firmware based on Sprinter and grbl.
+ Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ 
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+ 
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ GNU General Public License for more details.
+ 
+ You should have received a copy of the GNU General Public License
+ along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/*
+ This firmware is a mashup between Sprinter and grbl.
+  (https://github.com/kliment/Sprinter)
+  (https://github.com/simen/grbl/tree)
+ 
+ It has preliminary support for Matthew Roberts advance algorithm 
+    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+ */
+
+#include "EEPROMwrite.h"
+#include "fastio.h"
+#include "Configuration.h"
+#include "pins.h"
+#include "Marlin.h"
+#include "ultralcd.h"
+#include "streaming.h"
+#include "planner.h"
+#include "stepper.h"
+#include "temperature.h"
+#include "motion_control.h"
+
+#ifdef SIMPLE_LCD
+  #include "Simplelcd.h"
+#endif
+
+char version_string[] = "1.0.0 Alpha 1";
+
+#ifdef SDSUPPORT
+#include "SdFat.h"
+#endif //SDSUPPORT
+
+
+// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
+// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
+
+//Implemented Codes
+//-------------------
+// G0  -> G1
+// G1  - Coordinated Movement X Y Z E
+// G2  - CW ARC
+// G3  - CCW ARC
+// G4  - Dwell S<seconds> or P<milliseconds>
+// G28 - Home all Axis
+// G90 - Use Absolute Coordinates
+// G91 - Use Relative Coordinates
+// G92 - Set current position to cordinates given
+
+//RepRap M Codes
+// M104 - Set extruder target temp
+// M105 - Read current temp
+// M106 - Fan on
+// M107 - Fan off
+// M109 - Wait for extruder current temp to reach target temp.
+// M114 - Display current position
+
+//Custom M Codes
+// M20  - List SD card
+// M21  - Init SD card
+// M22  - Release SD card
+// M23  - Select SD file (M23 filename.g)
+// M24  - Start/resume SD print
+// M25  - Pause SD print
+// M26  - Set SD position in bytes (M26 S12345)
+// M27  - Report SD print status
+// M28  - Start SD write (M28 filename.g)
+// M29  - Stop SD write
+// M42  - Change pin status via gcode
+// M80  - Turn on Power Supply
+// M81  - Turn off Power Supply
+// M82  - Set E codes absolute (default)
+// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
+// M84  - Disable steppers until next move, 
+//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
+// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
+// M92  - Set axis_steps_per_unit - same syntax as G92
+// M115	- Capabilities string
+// M140 - Set bed target temp
+// M190 - Wait for bed current temp to reach target temp.
+// M200 - Set filament diameter
+// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
+// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
+// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
+// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
+// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+// M220 - set speed factor override percentage S:factor in percent
+// M301 - Set PID parameters P I and D
+// M500 - stores paramters in EEPROM
+// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).  D
+// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
+
+//Stepper Movement Variables
+
+char axis_codes[NUM_AXIS] = {
+  'X', 'Y', 'Z', 'E'};
+float destination[NUM_AXIS] = {
+  0.0, 0.0, 0.0, 0.0};
+float current_position[NUM_AXIS] = {
+  0.0, 0.0, 0.0, 0.0};
+float offset[3] = {0.0, 0.0, 0.0};
+bool home_all_axis = true;
+float feedrate = 1500.0, next_feedrate, saved_feedrate;
+long gcode_N, gcode_LastN;
+
+float homing_feedrate[] = HOMING_FEEDRATE;
+bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
+
+bool relative_mode = false;  //Determines Absolute or Relative Coordinates
+bool relative_mode_e = false;  //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
+
+uint8_t fanpwm=0;
+
+volatile int feedmultiply=100; //100->1 200->2
+int saved_feedmultiply;
+volatile bool feedmultiplychanged=false;
+// comm variables
+#define MAX_CMD_SIZE 96
+#define BUFSIZE 4
+char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
+bool fromsd[BUFSIZE];
+int bufindr = 0;
+int bufindw = 0;
+int buflen = 0;
+int i = 0;
+char serial_char;
+int serial_count = 0;
+boolean comment_mode = false;
+char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
+extern float HeaterPower;
+
+#include "EEPROM.h"
+
+const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
+
+float tt = 0, bt = 0;
+#ifdef WATCHPERIOD
+int watch_raw = -1000;
+unsigned long watchmillis = 0;
+#endif //WATCHPERIOD
+
+//Inactivity shutdown variables
+unsigned long previous_millis_cmd = 0;
+unsigned long max_inactive_time = 0;
+unsigned long stepper_inactive_time = 0;
+
+unsigned long starttime=0;
+unsigned long stoptime=0;
+#ifdef SDSUPPORT
+Sd2Card card;
+SdVolume volume;
+SdFile root;
+SdFile file;
+uint32_t filesize = 0;
+uint32_t sdpos = 0;
+bool sdmode = false;
+bool sdactive = false;
+bool savetosd = false;
+int16_t n;
+unsigned long autostart_atmillis=0;
+
+void initsd(){
+  sdactive = false;
+#if SDSS >- 1
+  if(root.isOpen())
+    root.close();
+  if (!card.init(SPI_FULL_SPEED,SDSS)){
+    //if (!card.init(SPI_HALF_SPEED,SDSS))
+    Serial.println("SD init fail");
+  }
+  else if (!volume.init(&card))
+    Serial.println("volume.init failed");
+  else if (!root.openRoot(&volume)) 
+    Serial.println("openRoot failed");
+  else 
+	{
+    sdactive = true;
+		Serial.println("SD card ok");
+	}
+#endif //SDSS
+}
+
+void quickinitsd(){
+	sdactive=false;
+	autostart_atmillis=millis()+5000;
+}
+
+inline void write_command(char *buf){
+  char* begin = buf;
+  char* npos = 0;
+  char* end = buf + strlen(buf) - 1;
+
+  file.writeError = false;
+  if((npos = strchr(buf, 'N')) != NULL){
+    begin = strchr(npos, ' ') + 1;
+    end = strchr(npos, '*') - 1;
+  }
+  end[1] = '\r';
+  end[2] = '\n';
+  end[3] = '\0';
+  //Serial.println(begin);
+  file.write(begin);
+  if (file.writeError){
+    Serial.println("error writing to file");
+  }
+}
+#endif //SDSUPPORT
+
+
+///adds an command to the main command buffer
+void enquecommand(const char *cmd)
+{
+  if(buflen < BUFSIZE)
+  {
+    //this is dangerous if a mixing of serial and this happsens
+    strcpy(&(cmdbuffer[bufindw][0]),cmd);
+    Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
+    bufindw= (bufindw + 1)%BUFSIZE;
+    buflen += 1;
+  }
+}
+
+void setup()
+{ 
+	
+  Serial.begin(BAUDRATE);
+  ECHOLN("Marlin "<<version_string);
+  Serial.println("start");
+#if defined FANCY_LCD || defined SIMPLE_LCD
+  lcd_init();
+#endif
+  for(int i = 0; i < BUFSIZE; i++){
+    fromsd[i] = false;
+  }
+  
+  RetrieveSettings(); // loads data from EEPROM if available
+
+
+  for(int i=0; i < NUM_AXIS; i++){
+    axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
+  }
+
+#ifdef SDSUPPORT
+  //power to SD reader
+#if SDPOWER > -1
+  SET_OUTPUT(SDPOWER); 
+  WRITE(SDPOWER,HIGH);
+#endif //SDPOWER
+  quickinitsd();
+
+#endif //SDSUPPORT
+  plan_init();  // Initialize planner;
+  st_init();    // Initialize stepper;
+  tp_init();    // Initialize temperature loop
+	//checkautostart();
+}
+
+#ifdef SDSUPPORT
+bool autostart_stilltocheck=true;
+
+
+void checkautostart(bool force)
+{
+	//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
+	if(!force)
+	{
+		if(!autostart_stilltocheck)
+			return;
+		if(autostart_atmillis<millis())
+			return;
+	}
+	autostart_stilltocheck=false;
+	if(!sdactive)
+	{
+		initsd();
+		if(!sdactive) //fail
+		return;
+	}
+        static int lastnr=0;
+        char autoname[30];
+        sprintf(autoname,"auto%i.g",lastnr);
+        for(int i=0;i<(int)strlen(autoname);i++)
+                autoname[i]=tolower(autoname[i]);
+        dir_t p;
+
+        root.rewind();
+        //char filename[11];
+        //int cnt=0;
+
+        bool found=false;
+        while (root.readDir(p) > 0) 
+        {
+                for(int i=0;i<(int)strlen((char*)p.name);i++)
+                        p.name[i]=tolower(p.name[i]);
+                //Serial.print((char*)p.name);
+                //Serial.print(" ");
+		//Serial.println(autoname);
+		if(p.name[9]!='~') //skip safety copies
+		if(strncmp((char*)p.name,autoname,5)==0)
+		{
+			char cmd[30];
+			
+			sprintf(cmd,"M23 %s",autoname);
+			//sprintf(cmd,"M115");
+			//enquecommand("G92 Z0");
+			//enquecommand("G1 Z10 F2000");
+			//enquecommand("G28 X-105 Y-105");
+			enquecommand(cmd);
+			enquecommand("M24");
+			found=true;
+			
+		}
+	}
+	if(!found)
+		lastnr=-1;
+	else
+		lastnr++;
+	
+}
+#else
+
+inline void checkautostart(bool x)
+{
+}
+#endif
+
+
+void loop()
+{
+  if(buflen<3)
+    get_command();
+	checkautostart(false);
+  if(buflen)
+  {
+#ifdef SDSUPPORT
+    if(savetosd){
+      if(strstr(cmdbuffer[bufindr],"M29") == NULL){
+        write_command(cmdbuffer[bufindr]);
+        Serial.println("ok");
+      }
+      else{
+        file.sync();
+        file.close();
+        savetosd = false;
+        Serial.println("Done saving file.");
+      }
+    }
+    else{
+      process_commands();
+    }
+#else
+    process_commands();
+#endif //SDSUPPORT
+    buflen = (buflen-1);
+    bufindr = (bufindr + 1)%BUFSIZE;
+  }
+  //check heater every n milliseconds
+  manage_heater();
+  manage_inactivity(1);
+  LCD_STATUS;
+}
+
+
+inline void get_command() 
+{ 
+  while( Serial.available() > 0  && buflen < BUFSIZE) {
+    serial_char = Serial.read();
+    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) 
+    {
+      if(!serial_count) return; //if empty line
+      cmdbuffer[bufindw][serial_count] = 0; //terminate string
+      if(!comment_mode){
+        fromsd[bufindw] = false;
+        if(strstr(cmdbuffer[bufindw], "N") != NULL)
+        {
+          strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
+          gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
+          if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
+            Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
+            Serial.println(gcode_LastN);
+            //Serial.println(gcode_N);
+            FlushSerialRequestResend();
+            serial_count = 0;
+            return;
+          }
+
+          if(strstr(cmdbuffer[bufindw], "*") != NULL)
+          {
+            byte checksum = 0;
+            byte count = 0;
+            while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
+            strchr_pointer = strchr(cmdbuffer[bufindw], '*');
+
+            if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
+              Serial.print("Error: checksum mismatch, Last Line:");
+              Serial.println(gcode_LastN);
+              FlushSerialRequestResend();
+              serial_count = 0;
+              return;
+            }
+            //if no errors, continue parsing
+          }
+          else 
+          {
+            Serial.print("Error: No Checksum with line number, Last Line:");
+            Serial.println(gcode_LastN);
+            FlushSerialRequestResend();
+            serial_count = 0;
+            return;
+          }
+
+          gcode_LastN = gcode_N;
+          //if no errors, continue parsing
+        }
+        else  // if we don't receive 'N' but still see '*'
+        {
+          if((strstr(cmdbuffer[bufindw], "*") != NULL))
+          {
+            Serial.print("Error: No Line Number with checksum, Last Line:");
+            Serial.println(gcode_LastN);
+            serial_count = 0;
+            return;
+          }
+        }
+        if((strstr(cmdbuffer[bufindw], "G") != NULL)){
+          strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
+          switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
+          case 0:
+          case 1:
+          case 2:
+          case 3:
+#ifdef SDSUPPORT
+            if(savetosd)
+              break;
+#endif //SDSUPPORT
+            Serial.println("ok"); 
+            break;
+          default:
+            break;
+          }
+
+        }
+        bufindw = (bufindw + 1)%BUFSIZE;
+        buflen += 1;
+
+      }
+      comment_mode = false; //for new command
+      serial_count = 0; //clear buffer
+    }
+    else
+    {
+      if(serial_char == ';') comment_mode = true;
+      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+    }
+  }
+#ifdef SDSUPPORT
+  if(!sdmode || serial_count!=0){
+    return;
+  }
+  while( filesize > sdpos  && buflen < BUFSIZE) {
+    n = file.read();
+    serial_char = (char)n;
+    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) 
+    {
+      sdpos = file.curPosition();
+      if(sdpos >= filesize){
+        sdmode = false;
+        Serial.println("Done printing file");
+				stoptime=millis();
+				char time[30];
+				unsigned long t=(stoptime-starttime)/1000;
+				int sec,min;
+				min=t/60;
+				sec=t%60;
+				sprintf(time,"%i min, %i sec",min,sec);
+				Serial.println(time);
+				LCD_MESSAGE(time);
+				checkautostart(true);
+      }
+      if(!serial_count) return; //if empty line
+      cmdbuffer[bufindw][serial_count] = 0; //terminate string
+      if(!comment_mode){
+        fromsd[bufindw] = true;
+        buflen += 1;
+        bufindw = (bufindw + 1)%BUFSIZE;
+      }
+      comment_mode = false; //for new command
+      serial_count = 0; //clear buffer
+    }
+    else
+    {
+      if(serial_char == ';') comment_mode = true;
+      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
+    }
+  }
+#endif //SDSUPPORT
+
+}
+
+
+inline float code_value() { 
+  return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); 
+}
+inline long code_value_long() { 
+  return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); 
+}
+inline bool code_seen(char code_string[]) { 
+  return (strstr(cmdbuffer[bufindr], code_string) != NULL); 
+}  //Return True if the string was found
+
+inline bool code_seen(char code)
+{
+  strchr_pointer = strchr(cmdbuffer[bufindr], code);
+  return (strchr_pointer != NULL);  //Return True if a character was found
+}
+
+inline void process_commands()
+{
+  unsigned long codenum; //throw away variable
+  char *starpos = NULL;
+
+  if(code_seen('G'))
+  {
+    switch((int)code_value())
+    {
+    case 0: // G0 -> G1
+    case 1: // G1
+      get_coordinates(); // For X Y Z E F
+      prepare_move();
+      previous_millis_cmd = millis();
+      //ClearToSend();
+      return;
+      //break;
+    case 2: // G2  - CW ARC
+      get_arc_coordinates();
+      prepare_arc_move(true);
+      previous_millis_cmd = millis();
+      return;
+    case 3: // G3  - CCW ARC
+      get_arc_coordinates();
+      prepare_arc_move(false);
+      previous_millis_cmd = millis();
+      return;
+    case 4: // G4 dwell
+      codenum = 0;
+      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
+      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
+      codenum += millis();  // keep track of when we started waiting
+      while(millis()  < codenum ){
+        manage_heater();
+      }
+      break;
+    case 28: //G28 Home all Axis one at a time
+      saved_feedrate = feedrate;
+      saved_feedmultiply = feedmultiply;
+      feedmultiply = 100;
+      
+      for(int i=0; i < NUM_AXIS; i++) {
+        destination[i] = current_position[i];
+      }
+      feedrate = 0.0;
+
+      home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
+
+      if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
+        if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
+//          st_synchronize();
+          current_position[X_AXIS] = 0;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
+          feedrate = homing_feedrate[X_AXIS];
+          prepare_move();
+          
+//          st_synchronize();        
+          current_position[X_AXIS] = 0;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[X_AXIS] = -5 * X_HOME_DIR;
+          prepare_move();
+          
+//          st_synchronize();         
+          destination[X_AXIS] = 10 * X_HOME_DIR;
+          feedrate = homing_feedrate[X_AXIS]/2 ;
+          prepare_move();
+          
+//          st_synchronize();
+          current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[X_AXIS] = current_position[X_AXIS];
+          feedrate = 0.0;
+        }
+      }
+
+      if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
+        if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
+          current_position[Y_AXIS] = 0;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
+          feedrate = homing_feedrate[Y_AXIS];
+          prepare_move();
+//          st_synchronize();
+
+          current_position[Y_AXIS] = 0;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[Y_AXIS] = -5 * Y_HOME_DIR;
+          prepare_move();
+//          st_synchronize();
+
+          destination[Y_AXIS] = 10 * Y_HOME_DIR;
+          feedrate = homing_feedrate[Y_AXIS]/2;
+          prepare_move();
+//          st_synchronize();
+
+          current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[Y_AXIS] = current_position[Y_AXIS];
+          feedrate = 0.0;
+        }
+      }
+
+      if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
+        if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
+          current_position[Z_AXIS] = 0;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
+          feedrate = homing_feedrate[Z_AXIS];
+          prepare_move();
+//          st_synchronize();
+
+          current_position[Z_AXIS] = 0;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[Z_AXIS] = -2 * Z_HOME_DIR;
+          prepare_move();
+//          st_synchronize();
+
+          destination[Z_AXIS] = 3 * Z_HOME_DIR;
+          feedrate = homing_feedrate[Z_AXIS]/2;
+          prepare_move();
+//          st_synchronize();
+
+          current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
+          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+          destination[Z_AXIS] = current_position[Z_AXIS];
+          feedrate = 0.0;         
+        }
+      }       
+      feedrate = saved_feedrate;
+      feedmultiply = saved_feedmultiply;
+      previous_millis_cmd = millis();
+      break;
+    case 90: // G90
+      relative_mode = false;
+      break;
+    case 91: // G91
+      relative_mode = true;
+      break;
+    case 92: // G92
+      if(!code_seen(axis_codes[E_AXIS])) 
+        st_synchronize();
+      for(int i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) current_position[i] = code_value();  
+      }
+      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
+      break;
+    }
+  }
+
+  else if(code_seen('M'))
+  {
+
+    switch( (int)code_value() ) 
+    {
+#ifdef SDSUPPORT
+
+    case 20: // M20 - list SD card
+      Serial.println("Begin file list");
+      root.ls();
+      Serial.println("End file list");
+      break;
+    case 21: // M21 - init SD card
+      sdmode = false;
+      initsd();
+      break;
+    case 22: //M22 - release SD card
+      sdmode = false;
+      sdactive = false;
+      break;
+    case 23: //M23 - Select file
+      if(sdactive){
+        sdmode = false;
+        file.close();
+        starpos = (strchr(strchr_pointer + 4,'*'));
+        if(starpos!=NULL)
+          *(starpos-1)='\0';
+        if (file.open(&root, strchr_pointer + 4, O_READ)) {
+          Serial.print("File opened:");
+          Serial.print(strchr_pointer + 4);
+          Serial.print(" Size:");
+          Serial.println(file.fileSize());
+          sdpos = 0;
+          filesize = file.fileSize();
+          Serial.println("File selected");
+        }
+        else{
+          Serial.println("file.open failed");
+        }
+      }
+      break;
+    case 24: //M24 - Start SD print
+      if(sdactive){
+        sdmode = true;
+				starttime=millis();
+      }
+      break;
+    case 25: //M25 - Pause SD print
+      if(sdmode){
+        sdmode = false;
+      }
+      break;
+    case 26: //M26 - Set SD index
+      if(sdactive && code_seen('S')){
+        sdpos = code_value_long();
+        file.seekSet(sdpos);
+      }
+      break;
+    case 27: //M27 - Get SD status
+      if(sdactive){
+        Serial.print("SD printing byte ");
+        Serial.print(sdpos);
+        Serial.print("/");
+        Serial.println(filesize);
+      }
+      else{
+        Serial.println("Not SD printing");
+      }
+      break;
+    case 28: //M28 - Start SD write
+      if(sdactive){
+        char* npos = 0;
+        file.close();
+        sdmode = false;
+        starpos = (strchr(strchr_pointer + 4,'*'));
+        if(starpos != NULL){
+          npos = strchr(cmdbuffer[bufindr], 'N');
+          strchr_pointer = strchr(npos,' ') + 1;
+          *(starpos-1) = '\0';
+        }
+        if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
+        {
+          Serial.print("open failed, File: ");
+          Serial.print(strchr_pointer + 4);
+          Serial.print(".");
+        }
+        else{
+          savetosd = true;
+          Serial.print("Writing to file: ");
+          Serial.println(strchr_pointer + 4);
+        }
+      }
+      break;
+    case 29: //M29 - Stop SD write
+      //processed in write to file routine above
+      //savetosd = false;
+      break;
+		case 30:
+		{
+			stoptime=millis();
+				char time[30];
+				unsigned long t=(stoptime-starttime)/1000;
+				int sec,min;
+				min=t/60;
+				sec=t%60;
+				sprintf(time,"%i min, %i sec",min,sec);
+				Serial.println(time);
+				LCD_MESSAGE(time);
+                }
+                                break;
+#endif //SDSUPPORT
+      case 42: //M42 -Change pin status via gcode
+        if (code_seen('S'))
+        {
+          int pin_status = code_value();
+          if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
+          {
+            int pin_number = code_value();
+            for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
+            {
+              if (sensitive_pins[i] == pin_number)
+              {
+                pin_number = -1;
+                break;
+              }
+            }
+            
+            if (pin_number > -1)
+            {              
+              pinMode(pin_number, OUTPUT);
+              digitalWrite(pin_number, pin_status);
+              analogWrite(pin_number, pin_status);
+            }
+          }
+        }
+        break;
+      case 104: // M104
+                if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
+#ifdef PIDTEMP
+                pid_setpoint = code_value();
+#endif //PIDTEM
+        #ifdef WATCHPERIOD
+            if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
+                watchmillis = max(1,millis());
+                watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
+            }else{
+                watchmillis = 0;
+            }
+        #endif
+        break;
+      case 140: // M140 set bed temp
+                if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
+        break;
+      case 105: // M105
+        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+                tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
+        #endif
+        #if TEMP_1_PIN > -1
+                bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
+        #endif
+        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
+            Serial.print("ok T:");
+            Serial.print(tt); 
+//            Serial.print(", raw:");
+//            Serial.print(current_raw);       
+          #if TEMP_1_PIN > -1 
+#ifdef PIDTEMP
+            Serial.print(" B:");
+            #if TEMP_1_PIN > -1
+            Serial.println(bt); 
+            #else
+            Serial.println(HeaterPower); 
+            #endif
+#else
+            Serial.println();
+#endif
+          #else
+            Serial.println();
+          #endif
+        #else
+          Serial.println("No thermistors - no temp");
+        #endif
+        return;
+        //break;
+      case 109: {// M109 - Wait for extruder heater to reach target.
+            LCD_MESSAGE("Heating...");
+               if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
+            #ifdef PIDTEMP
+            pid_setpoint = code_value();
+            #endif //PIDTEM
+            #ifdef WATCHPERIOD
+          if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
+              watchmillis = max(1,millis());
+              watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
+            } else {
+              watchmillis = 0;
+            }
+            #endif //WATCHPERIOD
+            codenum = millis(); 
+     
+               /* See if we are heating up or cooling down */
+              bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
+
+            #ifdef TEMP_RESIDENCY_TIME
+            long residencyStart;
+            residencyStart = -1;
+            /* continue to loop until we have reached the target temp   
+              _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
+            while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
+                    (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
+            #else
+            while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
+            #endif //TEMP_RESIDENCY_TIME
+              if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
+                Serial.print("T:");
+              Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) ); 
+                codenum = millis();
+              }
+              manage_heater();
+              LCD_STATUS;
+              #ifdef TEMP_RESIDENCY_TIME
+               /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
+                  or when current temp falls outside the hysteresis after target temp was reached */
+              if ((residencyStart == -1 &&  target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
+                  (residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
+                  (residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
+                residencyStart = millis();
+              }
+              #endif //TEMP_RESIDENCY_TIME
+            }
+            LCD_MESSAGE("Marlin ready.");
+          }
+          break;
+      case 190: // M190 - Wait bed for heater to reach target.
+      #if TEMP_1_PIN > -1
+          if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
+        codenum = millis(); 
+          while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED]) 
+                                {
+          if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
+          {
+            float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
+            Serial.print("T:");
+            Serial.println( tt );
+            Serial.print("ok T:");
+            Serial.print( tt ); 
+            Serial.print(" B:");
+            Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) ); 
+            codenum = millis(); 
+          }
+            manage_heater();
+        }
+      #endif
+      break;
+#if FAN_PIN > -1
+      case 106: //M106 Fan On
+        if (code_seen('S')){
+            WRITE(FAN_PIN,HIGH);
+            fanpwm=constrain(code_value(),0,255);
+            analogWrite(FAN_PIN,  fanpwm);
+        }
+        else {
+          WRITE(FAN_PIN,HIGH);
+          fanpwm=255;
+          analogWrite(FAN_PIN, fanpwm);			
+        }
+        break;
+      case 107: //M107 Fan Off
+        WRITE(FAN_PIN,LOW);
+        analogWrite(FAN_PIN, 0);
+        break;
+#endif
+#if (PS_ON_PIN > -1)
+      case 80: // M80 - ATX Power On
+        SET_OUTPUT(PS_ON_PIN); //GND
+        break;
+      case 81: // M81 - ATX Power Off
+        SET_INPUT(PS_ON_PIN); //Floating
+        break;
+#endif
+    case 82:
+      axis_relative_modes[3] = false;
+      break;
+    case 83:
+      axis_relative_modes[3] = true;
+      break;
+		case 18:
+    case 84:
+      if(code_seen('S')){ 
+        stepper_inactive_time = code_value() * 1000; 
+      }
+      else{ 
+        st_synchronize(); 
+        disable_x(); 
+        disable_y(); 
+        disable_z(); 
+        disable_e(); 
+      }
+      break;
+    case 85: // M85
+      code_seen('S');
+      max_inactive_time = code_value() * 1000; 
+      break;
+    case 92: // M92
+      for(int i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
+      }
+
+      break;
+    case 115: // M115
+      Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
+      break;
+    case 114: // M114
+      Serial.print("X:");
+      Serial.print(current_position[X_AXIS]);
+      Serial.print("Y:");
+      Serial.print(current_position[Y_AXIS]);
+      Serial.print("Z:");
+      Serial.print(current_position[Z_AXIS]);
+      Serial.print("E:");      
+      Serial.print(current_position[E_AXIS]);
+      #ifdef DEBUG_STEPS
+        Serial.print(" Count X:");
+        Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
+        Serial.print("Y:");
+        Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
+        Serial.print("Z:");
+        Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
+      #endif
+      Serial.println("");
+      break;
+    case 119: // M119
+#if (X_MIN_PIN > -1)
+      Serial.print("x_min:");
+      Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (X_MAX_PIN > -1)
+      Serial.print("x_max:");
+      Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Y_MIN_PIN > -1)
+      Serial.print("y_min:");
+      Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Y_MAX_PIN > -1)
+      Serial.print("y_max:");
+      Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Z_MIN_PIN > -1)
+      Serial.print("z_min:");
+      Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+#if (Z_MAX_PIN > -1)
+      Serial.print("z_max:");
+      Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
+#endif
+      Serial.println("");
+      break;
+      //TODO: update for all axis, use for loop
+    case 201: // M201
+      for(int i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+      }
+      break;
+#if 0 // Not used for Sprinter/grbl gen6
+    case 202: // M202
+      for(int i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
+      }
+      break;
+#endif
+    case 203: // M203 max feedrate mm/sec
+      for(int i=0; i < NUM_AXIS; i++) {
+        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
+      }
+      break;
+    case 204: // M204 acclereration S normal moves T filmanent only moves
+      {
+        if(code_seen('S')) acceleration = code_value() ;
+        if(code_seen('T')) retract_acceleration = code_value() ;
+      }
+      break;
+      case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
+      {
+        if(code_seen('S')) minimumfeedrate = code_value()*60 ;
+        if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
+        if(code_seen('B')) minsegmenttime = code_value() ;
+        if(code_seen('X')) max_xy_jerk = code_value()*60 ;
+        if(code_seen('Z')) max_z_jerk = code_value()*60 ;
+      }
+      break;
+      case 220: // M220 S<factor in percent>- set speed factor override percentage
+      {
+        if(code_seen('S')) 
+        {
+          feedmultiply = code_value() ;
+          feedmultiplychanged=true;
+        }
+      }
+      break;
+#ifdef PIDTEMP
+    case 301: // M301
+      if(code_seen('P')) Kp = code_value();
+      if(code_seen('I')) Ki = code_value()*PID_dT;
+      if(code_seen('D')) Kd = code_value()/PID_dT;
+//      ECHOLN("Kp "<<_FLOAT(Kp,2));
+//      ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
+//      ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
+
+//      temp_iState_min = 0.0;
+//      if (Ki!=0) {
+//      temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
+//      }
+//      else       temp_iState_max = 1.0e10;
+      break;
+#endif //PIDTEMP
+      case 500: // Store settings in EEPROM
+      {
+          StoreSettings();
+      }
+      break;
+      case 501: // Read settings from EEPROM
+      {
+        RetrieveSettings();
+      }
+      break;
+      case 502: // Revert to default settings
+      {
+        RetrieveSettings(true);
+      }
+      break;
+
+    }
+  }
+  else{
+    Serial.println("Unknown command:");
+    Serial.println(cmdbuffer[bufindr]);
+  }
+
+  ClearToSend();
+}
+
+void FlushSerialRequestResend()
+{
+  //char cmdbuffer[bufindr][100]="Resend:";
+  Serial.flush();
+  Serial.print("Resend:");
+  Serial.println(gcode_LastN + 1);
+  ClearToSend();
+}
+
+void ClearToSend()
+{
+  previous_millis_cmd = millis();
+#ifdef SDSUPPORT
+  if(fromsd[bufindr])
+    return;
+#endif //SDSUPPORT
+  Serial.println("ok"); 
+}
+
+inline void get_coordinates()
+{
+  for(int i=0; i < NUM_AXIS; i++) {
+    if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
+    else destination[i] = current_position[i];                                                       //Are these else lines really needed?
+  }
+  if(code_seen('F')) {
+    next_feedrate = code_value();
+    if(next_feedrate > 0.0) feedrate = next_feedrate;
+  }
+}
+
+inline void get_arc_coordinates()
+{
+   get_coordinates();
+   if(code_seen("I")) offset[0] = code_value();
+   if(code_seen("J")) offset[1] = code_value();
+}
+
+void prepare_move()
+{
+  plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
+  for(int i=0; i < NUM_AXIS; i++) {
+    current_position[i] = destination[i];
+  }
+}
+
+void prepare_arc_move(char isclockwise) {
+#if 0
+  if (radius_mode) {
+    /* 
+      We need to calculate the center of the circle that has the designated radius and passes
+      through both the current position and the target position. This method calculates the following
+      set of equations where [x,y] is the vector from current to target position, d == magnitude of 
+      that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
+      the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the 
+      length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point 
+      [i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
+      
+      d^2 == x^2 + y^2
+      h^2 == r^2 - (d/2)^2
+      i == x/2 - y/d*h
+      j == y/2 + x/d*h
+      
+                                                           O <- [i,j]
+                                                        -  |
+                                              r      -     |
+                                                  -        |
+                                               -           | h
+                                            -              |
+                              [0,0] ->  C -----------------+--------------- T  <- [x,y]
+                                        | <------ d/2 ---->|
+                
+      C - Current position
+      T - Target position
+      O - center of circle that pass through both C and T
+      d - distance from C to T
+      r - designated radius
+      h - distance from center of CT to O
+      
+      Expanding the equations:
+
+      d -> sqrt(x^2 + y^2)
+      h -> sqrt(4 * r^2 - x^2 - y^2)/2
+      i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2 
+      j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
+     
+      Which can be written:
+      
+      i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
+      j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
+      
+      Which we for size and speed reasons optimize to:
+
+      h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
+      i = (x - (y * h_x2_div_d))/2
+      j = (y + (x * h_x2_div_d))/2
+      
+    */
+    
+    // Calculate the change in position along each selected axis
+    double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
+    double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
+    
+    clear_vector(offset);
+    double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
+    // If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
+    // real CNC, and thus - for practical reasons - we will terminate promptly:
+    if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
+    // Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
+    if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
+    
+    /* The counter clockwise circle lies to the left of the target direction. When offset is positive,
+       the left hand circle will be generated - when it is negative the right hand circle is generated.
+       
+       
+                                                         T  <-- Target position
+                                                         
+                                                         ^ 
+              Clockwise circles with this center         |          Clockwise circles with this center will have
+              will have > 180 deg of angular travel      |          < 180 deg of angular travel, which is a good thing!
+                                               \         |          /   
+  center of arc when h_x2_div_d is positive ->  x <----- | -----> x <- center of arc when h_x2_div_d is negative
+                                                         |
+                                                         |
+                                                         
+                                                         C  <-- Current position                                 */
+                
+
+    // Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!), 
+    // even though it is advised against ever generating such circles in a single line of g-code. By 
+    // inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
+    // travel and thus we get the unadvisably long arcs as prescribed.
+    if (r < 0) { 
+        h_x2_div_d = -h_x2_div_d; 
+        r = -r; // Finished with r. Set to positive for mc_arc
+    }        
+    // Complete the operation by calculating the actual center of the arc
+    offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
+    offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
+
+  } else { // Offset mode specific computations
+#endif
+    float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
+
+//  }
+  
+  // Set clockwise/counter-clockwise sign for mc_arc computations
+//  uint8_t isclockwise = false;
+//  if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
+
+  // Trace the arc
+  mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
+    
+//  }
+  
+  // As far as the parser is concerned, the position is now == target. In reality the
+  // motion control system might still be processing the action and the real tool position
+  // in any intermediate location.
+  for(int ii=0; ii < NUM_AXIS; ii++) {
+    current_position[ii] = destination[ii];
+  }
+}
+
+#ifdef USE_WATCHDOG
+
+#include  <avr/wdt.h>
+#include  <avr/interrupt.h>
+
+volatile uint8_t timeout_seconds=0;
+
+void(* ctrlaltdelete) (void) = 0;
+
+ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
+  if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
+  {
+   kill();
+#ifdef RESET_MANUAL
+    LCD_MESSAGE("Please Reset!");
+    ECHOLN("echo_: Something is wrong, please turn off the printer.");
+#else
+    LCD_MESSAGE("Timeout, resetting!");
+#endif 
+    //disable watchdog, it will survife reboot.
+    WDTCSR |= (1<<WDCE) | (1<<WDE);
+    WDTCSR = 0;
+#ifdef RESET_MANUAL
+    while(1); //wait for user or serial reset
+#else
+    ctrlaltdelete();
+#endif
+  }
+}
+
+/// intialise watch dog with a 1 sec interrupt time
+void wd_init() {
+  WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
+  WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )|  (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
+}
+
+/// reset watchdog. MUST be called every 1s after init or avr will reset.
+void wd_reset() {
+  wdt_reset();
+  timeout_seconds=0; //reset counter for resets
+}
+#endif /* USE_WATCHDOG */
+
+
+inline void kill()
+{
+  #if TEMP_0_PIN > -1
+  target_raw[0]=0;
+   #if HEATER_0_PIN > -1  
+     WRITE(HEATER_0_PIN,LOW);
+   #endif
+  #endif
+  #if TEMP_1_PIN > -1
+  target_raw[1]=0;
+  #if HEATER_1_PIN > -1 
+    WRITE(HEATER_1_PIN,LOW);
+  #endif
+  #endif
+  #if TEMP_2_PIN > -1
+  target_raw[2]=0;
+  #if HEATER_2_PIN > -1  
+    WRITE(HEATER_2_PIN,LOW);
+  #endif
+  #endif
+  disable_x();
+  disable_y();
+  disable_z();
+  disable_e();
+  
+  if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
+  Serial.println("!! Printer halted. kill() called !!");
+  while(1); // Wait for reset
+}
+
+void manage_inactivity(byte debug) { 
+  if( (millis()-previous_millis_cmd) >  max_inactive_time ) if(max_inactive_time) kill(); 
+  if( (millis()-previous_millis_cmd) >  stepper_inactive_time ) if(stepper_inactive_time) { 
+    disable_x(); 
+    disable_y(); 
+    disable_z(); 
+    disable_e(); 
+  }
+  check_axes_activity();
+}
 
-/*
- This firmware is a mashup between Sprinter and grbl.
-  (https://github.com/kliment/Sprinter)
-  (https://github.com/simen/grbl/tree)
- 
- It has preliminary support for Matthew Roberts advance algorithm 
-    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- */
-
-#include "EEPROMwrite.h"
-#include "fastio.h"
-#include "Configuration.h"
-#include "pins.h"
-#include "Marlin.h"
-#include "ultralcd.h"
-#include "streaming.h"
-#include "planner.h"
-#include "stepper.h"
-#include "temperature.h"
-
-#ifdef SIMPLE_LCD
-  #include "Simplelcd.h"
-#endif
-
-char version_string[] = "1.0.0 Alpha 1";
-
-#ifdef SDSUPPORT
-#include "SdFat.h"
-#endif //SDSUPPORT
-
-
-// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
-// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
-//Implemented Codes
-//-------------------
-// G0  -> G1
-// G1  - Coordinated Movement X Y Z E
-// G2  - CW ARC
-// G3  - CCW ARC
-// G4  - Dwell S<seconds> or P<milliseconds>
-// G28 - Home all Axis
-// G90 - Use Absolute Coordinates
-// G91 - Use Relative Coordinates
-// G92 - Set current position to cordinates given
-
-//RepRap M Codes
-// M104 - Set extruder target temp
-// M105 - Read current temp
-// M106 - Fan on
-// M107 - Fan off
-// M109 - Wait for extruder current temp to reach target temp.
-// M114 - Display current position
-
-//Custom M Codes
-// M20  - List SD card
-// M21  - Init SD card
-// M22  - Release SD card
-// M23  - Select SD file (M23 filename.g)
-// M24  - Start/resume SD print
-// M25  - Pause SD print
-// M26  - Set SD position in bytes (M26 S12345)
-// M27  - Report SD print status
-// M28  - Start SD write (M28 filename.g)
-// M29  - Stop SD write
-// M42  - Change pin status via gcode
-// M80  - Turn on Power Supply
-// M81  - Turn off Power Supply
-// M82  - Set E codes absolute (default)
-// M83  - Set E codes relative while in Absolute Coordinates (G90) mode
-// M84  - Disable steppers until next move, 
-//        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
-// M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
-// M92  - Set axis_steps_per_unit - same syntax as G92
-// M115	- Capabilities string
-// M140 - Set bed target temp
-// M190 - Wait for bed current temp to reach target temp.
-// M200 - Set filament diameter
-// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
-// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
-// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
-// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
-// M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
-// M220 - set speed factor override percentage S:factor in percent
-// M301 - Set PID parameters P I and D
-// M500 - stores paramters in EEPROM
-// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).  D
-// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
-
-//Stepper Movement Variables
-
-char axis_codes[NUM_AXIS] = {
-  'X', 'Y', 'Z', 'E'};
-float destination[NUM_AXIS] = {
-  0.0, 0.0, 0.0, 0.0};
-float current_position[NUM_AXIS] = {
-  0.0, 0.0, 0.0, 0.0};
-bool home_all_axis = true;
-float feedrate = 1500.0, next_feedrate, saved_feedrate;
-long gcode_N, gcode_LastN;
-
-float homing_feedrate[] = HOMING_FEEDRATE;
-bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-
-bool relative_mode = false;  //Determines Absolute or Relative Coordinates
-bool relative_mode_e = false;  //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
-
-uint8_t fanpwm=0;
-
-volatile int feedmultiply=100; //100->1 200->2
-int saved_feedmultiply;
-volatile bool feedmultiplychanged=false;
-// comm variables
-#define MAX_CMD_SIZE 96
-#define BUFSIZE 4
-char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
-bool fromsd[BUFSIZE];
-int bufindr = 0;
-int bufindw = 0;
-int buflen = 0;
-int i = 0;
-char serial_char;
-int serial_count = 0;
-boolean comment_mode = false;
-char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-extern float HeaterPower;
-
-#include "EEPROM.h"
-
-const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
-
-float tt = 0, bt = 0;
-#ifdef WATCHPERIOD
-int watch_raw = -1000;
-unsigned long watchmillis = 0;
-#endif //WATCHPERIOD
-
-//Inactivity shutdown variables
-unsigned long previous_millis_cmd = 0;
-unsigned long max_inactive_time = 0;
-unsigned long stepper_inactive_time = 0;
-
-unsigned long starttime=0;
-unsigned long stoptime=0;
-#ifdef SDSUPPORT
-Sd2Card card;
-SdVolume volume;
-SdFile root;
-SdFile file;
-uint32_t filesize = 0;
-uint32_t sdpos = 0;
-bool sdmode = false;
-bool sdactive = false;
-bool savetosd = false;
-int16_t n;
-unsigned long autostart_atmillis=0;
-
-void initsd(){
-  sdactive = false;
-#if SDSS >- 1
-  if(root.isOpen())
-    root.close();
-  if (!card.init(SPI_FULL_SPEED,SDSS)){
-    //if (!card.init(SPI_HALF_SPEED,SDSS))
-    Serial.println("SD init fail");
-  }
-  else if (!volume.init(&card))
-    Serial.println("volume.init failed");
-  else if (!root.openRoot(&volume)) 
-    Serial.println("openRoot failed");
-  else 
-	{
-    sdactive = true;
-		Serial.println("SD card ok");
-	}
-#endif //SDSS
-}
-
-void quickinitsd(){
-	sdactive=false;
-	autostart_atmillis=millis()+5000;
-}
-
-inline void write_command(char *buf){
-  char* begin = buf;
-  char* npos = 0;
-  char* end = buf + strlen(buf) - 1;
-
-  file.writeError = false;
-  if((npos = strchr(buf, 'N')) != NULL){
-    begin = strchr(npos, ' ') + 1;
-    end = strchr(npos, '*') - 1;
-  }
-  end[1] = '\r';
-  end[2] = '\n';
-  end[3] = '\0';
-  //Serial.println(begin);
-  file.write(begin);
-  if (file.writeError){
-    Serial.println("error writing to file");
-  }
-}
-#endif //SDSUPPORT
-
-
-///adds an command to the main command buffer
-void enquecommand(const char *cmd)
-{
-  if(buflen < BUFSIZE)
-  {
-    //this is dangerous if a mixing of serial and this happsens
-    strcpy(&(cmdbuffer[bufindw][0]),cmd);
-    Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
-    bufindw= (bufindw + 1)%BUFSIZE;
-    buflen += 1;
-  }
-}
-
-void setup()
-{ 
-	
-  Serial.begin(BAUDRATE);
-  ECHOLN("Marlin "<<version_string);
-  Serial.println("start");
-#if defined FANCY_LCD || defined SIMPLE_LCD
-  lcd_init();
-#endif
-  for(int i = 0; i < BUFSIZE; i++){
-    fromsd[i] = false;
-  }
-  
-  RetrieveSettings(); // loads data from EEPROM if available
-
-
-  for(int i=0; i < NUM_AXIS; i++){
-    axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
-  }
-
-#ifdef SDSUPPORT
-  //power to SD reader
-#if SDPOWER > -1
-  SET_OUTPUT(SDPOWER); 
-  WRITE(SDPOWER,HIGH);
-#endif //SDPOWER
-  quickinitsd();
-
-#endif //SDSUPPORT
-  plan_init();  // Initialize planner;
-  st_init();    // Initialize stepper;
-  tp_init();    // Initialize temperature loop
-	//checkautostart();
-}
-
-#ifdef SDSUPPORT
-bool autostart_stilltocheck=true;
-
-
-void checkautostart(bool force)
-{
-	//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
-	if(!force)
-	{
-		if(!autostart_stilltocheck)
-			return;
-		if(autostart_atmillis<millis())
-			return;
-	}
-	autostart_stilltocheck=false;
-	if(!sdactive)
-	{
-		initsd();
-		if(!sdactive) //fail
-		return;
-	}
-        static int lastnr=0;
-        char autoname[30];
-        sprintf(autoname,"auto%i.g",lastnr);
-        for(int i=0;i<(int)strlen(autoname);i++)
-                autoname[i]=tolower(autoname[i]);
-        dir_t p;
-
-        root.rewind();
-        //char filename[11];
-        //int cnt=0;
-
-        bool found=false;
-        while (root.readDir(p) > 0) 
-        {
-                for(int i=0;i<(int)strlen((char*)p.name);i++)
-                        p.name[i]=tolower(p.name[i]);
-                //Serial.print((char*)p.name);
-                //Serial.print(" ");
-		//Serial.println(autoname);
-		if(p.name[9]!='~') //skip safety copies
-		if(strncmp((char*)p.name,autoname,5)==0)
-		{
-			char cmd[30];
-			
-			sprintf(cmd,"M23 %s",autoname);
-			//sprintf(cmd,"M115");
-			//enquecommand("G92 Z0");
-			//enquecommand("G1 Z10 F2000");
-			//enquecommand("G28 X-105 Y-105");
-			enquecommand(cmd);
-			enquecommand("M24");
-			found=true;
-			
-		}
-	}
-	if(!found)
-		lastnr=-1;
-	else
-		lastnr++;
-	
-}
-#else
-
-inline void checkautostart(bool x)
-{
-}
-#endif
-
-
-void loop()
-{
-  if(buflen<3)
-    get_command();
-	checkautostart(false);
-  if(buflen)
-  {
-#ifdef SDSUPPORT
-    if(savetosd){
-      if(strstr(cmdbuffer[bufindr],"M29") == NULL){
-        write_command(cmdbuffer[bufindr]);
-        Serial.println("ok");
-      }
-      else{
-        file.sync();
-        file.close();
-        savetosd = false;
-        Serial.println("Done saving file.");
-      }
-    }
-    else{
-      process_commands();
-    }
-#else
-    process_commands();
-#endif //SDSUPPORT
-    buflen = (buflen-1);
-    bufindr = (bufindr + 1)%BUFSIZE;
-  }
-  //check heater every n milliseconds
-  manage_heater();
-  manage_inactivity(1);
-  LCD_STATUS;
-}
-
-
-inline void get_command() 
-{ 
-  while( Serial.available() > 0  && buflen < BUFSIZE) {
-    serial_char = Serial.read();
-    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) ) 
-    {
-      if(!serial_count) return; //if empty line
-      cmdbuffer[bufindw][serial_count] = 0; //terminate string
-      if(!comment_mode){
-        fromsd[bufindw] = false;
-        if(strstr(cmdbuffer[bufindw], "N") != NULL)
-        {
-          strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
-          gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
-          if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
-            Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
-            Serial.println(gcode_LastN);
-            //Serial.println(gcode_N);
-            FlushSerialRequestResend();
-            serial_count = 0;
-            return;
-          }
-
-          if(strstr(cmdbuffer[bufindw], "*") != NULL)
-          {
-            byte checksum = 0;
-            byte count = 0;
-            while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
-            strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
-            if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
-              Serial.print("Error: checksum mismatch, Last Line:");
-              Serial.println(gcode_LastN);
-              FlushSerialRequestResend();
-              serial_count = 0;
-              return;
-            }
-            //if no errors, continue parsing
-          }
-          else 
-          {
-            Serial.print("Error: No Checksum with line number, Last Line:");
-            Serial.println(gcode_LastN);
-            FlushSerialRequestResend();
-            serial_count = 0;
-            return;
-          }
-
-          gcode_LastN = gcode_N;
-          //if no errors, continue parsing
-        }
-        else  // if we don't receive 'N' but still see '*'
-        {
-          if((strstr(cmdbuffer[bufindw], "*") != NULL))
-          {
-            Serial.print("Error: No Line Number with checksum, Last Line:");
-            Serial.println(gcode_LastN);
-            serial_count = 0;
-            return;
-          }
-        }
-        if((strstr(cmdbuffer[bufindw], "G") != NULL)){
-          strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
-          switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
-          case 0:
-          case 1:
-#ifdef SDSUPPORT
-            if(savetosd)
-              break;
-#endif //SDSUPPORT
-            Serial.println("ok"); 
-            break;
-          default:
-            break;
-          }
-
-        }
-        bufindw = (bufindw + 1)%BUFSIZE;
-        buflen += 1;
-
-      }
-      comment_mode = false; //for new command
-      serial_count = 0; //clear buffer
-    }
-    else
-    {
-      if(serial_char == ';') comment_mode = true;
-      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
-    }
-  }
-#ifdef SDSUPPORT
-  if(!sdmode || serial_count!=0){
-    return;
-  }
-  while( filesize > sdpos  && buflen < BUFSIZE) {
-    n = file.read();
-    serial_char = (char)n;
-    if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1) 
-    {
-      sdpos = file.curPosition();
-      if(sdpos >= filesize){
-        sdmode = false;
-        Serial.println("Done printing file");
-				stoptime=millis();
-				char time[30];
-				unsigned long t=(stoptime-starttime)/1000;
-				int sec,min;
-				min=t/60;
-				sec=t%60;
-				sprintf(time,"%i min, %i sec",min,sec);
-				Serial.println(time);
-				LCD_MESSAGE(time);
-				checkautostart(true);
-      }
-      if(!serial_count) return; //if empty line
-      cmdbuffer[bufindw][serial_count] = 0; //terminate string
-      if(!comment_mode){
-        fromsd[bufindw] = true;
-        buflen += 1;
-        bufindw = (bufindw + 1)%BUFSIZE;
-      }
-      comment_mode = false; //for new command
-      serial_count = 0; //clear buffer
-    }
-    else
-    {
-      if(serial_char == ';') comment_mode = true;
-      if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
-    }
-  }
-#endif //SDSUPPORT
-
-}
-
-
-inline float code_value() { 
-  return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); 
-}
-inline long code_value_long() { 
-  return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); 
-}
-inline bool code_seen(char code_string[]) { 
-  return (strstr(cmdbuffer[bufindr], code_string) != NULL); 
-}  //Return True if the string was found
-
-inline bool code_seen(char code)
-{
-  strchr_pointer = strchr(cmdbuffer[bufindr], code);
-  return (strchr_pointer != NULL);  //Return True if a character was found
-}
-
-inline void process_commands()
-{
-  unsigned long codenum; //throw away variable
-  char *starpos = NULL;
-
-  if(code_seen('G'))
-  {
-    switch((int)code_value())
-    {
-    case 0: // G0 -> G1
-    case 1: // G1
-      get_coordinates(); // For X Y Z E F
-      prepare_move();
-      previous_millis_cmd = millis();
-      //ClearToSend();
-      return;
-      //break;
-    case 4: // G4 dwell
-      codenum = 0;
-      if(code_seen('P')) codenum = code_value(); // milliseconds to wait
-      if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
-      codenum += millis();  // keep track of when we started waiting
-      while(millis()  < codenum ){
-        manage_heater();
-      }
-      break;
-    case 28: //G28 Home all Axis one at a time
-      saved_feedrate = feedrate;
-      saved_feedmultiply = feedmultiply;
-      feedmultiply = 100;
-      
-      for(int i=0; i < NUM_AXIS; i++) {
-        destination[i] = current_position[i];
-      }
-      feedrate = 0.0;
-
-      home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
-
-      if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
-        if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
-//          st_synchronize();
-          current_position[X_AXIS] = 0;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
-          feedrate = homing_feedrate[X_AXIS];
-          prepare_move();
-          
-//          st_synchronize();        
-          current_position[X_AXIS] = 0;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[X_AXIS] = -5 * X_HOME_DIR;
-          prepare_move();
-          
-//          st_synchronize();         
-          destination[X_AXIS] = 10 * X_HOME_DIR;
-          feedrate = homing_feedrate[X_AXIS]/2 ;
-          prepare_move();
-          
-//          st_synchronize();
-          current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[X_AXIS] = current_position[X_AXIS];
-          feedrate = 0.0;
-        }
-      }
-
-      if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
-        if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
-          current_position[Y_AXIS] = 0;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
-          feedrate = homing_feedrate[Y_AXIS];
-          prepare_move();
-//          st_synchronize();
-
-          current_position[Y_AXIS] = 0;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[Y_AXIS] = -5 * Y_HOME_DIR;
-          prepare_move();
-//          st_synchronize();
-
-          destination[Y_AXIS] = 10 * Y_HOME_DIR;
-          feedrate = homing_feedrate[Y_AXIS]/2;
-          prepare_move();
-//          st_synchronize();
-
-          current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[Y_AXIS] = current_position[Y_AXIS];
-          feedrate = 0.0;
-        }
-      }
-
-      if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
-        if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
-          current_position[Z_AXIS] = 0;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
-          feedrate = homing_feedrate[Z_AXIS];
-          prepare_move();
-//          st_synchronize();
-
-          current_position[Z_AXIS] = 0;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[Z_AXIS] = -2 * Z_HOME_DIR;
-          prepare_move();
-//          st_synchronize();
-
-          destination[Z_AXIS] = 3 * Z_HOME_DIR;
-          feedrate = homing_feedrate[Z_AXIS]/2;
-          prepare_move();
-//          st_synchronize();
-
-          current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
-          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-          destination[Z_AXIS] = current_position[Z_AXIS];
-          feedrate = 0.0;         
-        }
-      }       
-      feedrate = saved_feedrate;
-      feedmultiply = saved_feedmultiply;
-      previous_millis_cmd = millis();
-      break;
-    case 90: // G90
-      relative_mode = false;
-      break;
-    case 91: // G91
-      relative_mode = true;
-      break;
-    case 92: // G92
-      if(!code_seen(axis_codes[E_AXIS])) 
-        st_synchronize();
-      for(int i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) current_position[i] = code_value();  
-      }
-      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
-      break;
-    }
-  }
-
-  else if(code_seen('M'))
-  {
-
-    switch( (int)code_value() ) 
-    {
-#ifdef SDSUPPORT
-
-    case 20: // M20 - list SD card
-      Serial.println("Begin file list");
-      root.ls();
-      Serial.println("End file list");
-      break;
-    case 21: // M21 - init SD card
-      sdmode = false;
-      initsd();
-      break;
-    case 22: //M22 - release SD card
-      sdmode = false;
-      sdactive = false;
-      break;
-    case 23: //M23 - Select file
-      if(sdactive){
-        sdmode = false;
-        file.close();
-        starpos = (strchr(strchr_pointer + 4,'*'));
-        if(starpos!=NULL)
-          *(starpos-1)='\0';
-        if (file.open(&root, strchr_pointer + 4, O_READ)) {
-          Serial.print("File opened:");
-          Serial.print(strchr_pointer + 4);
-          Serial.print(" Size:");
-          Serial.println(file.fileSize());
-          sdpos = 0;
-          filesize = file.fileSize();
-          Serial.println("File selected");
-        }
-        else{
-          Serial.println("file.open failed");
-        }
-      }
-      break;
-    case 24: //M24 - Start SD print
-      if(sdactive){
-        sdmode = true;
-				starttime=millis();
-      }
-      break;
-    case 25: //M25 - Pause SD print
-      if(sdmode){
-        sdmode = false;
-      }
-      break;
-    case 26: //M26 - Set SD index
-      if(sdactive && code_seen('S')){
-        sdpos = code_value_long();
-        file.seekSet(sdpos);
-      }
-      break;
-    case 27: //M27 - Get SD status
-      if(sdactive){
-        Serial.print("SD printing byte ");
-        Serial.print(sdpos);
-        Serial.print("/");
-        Serial.println(filesize);
-      }
-      else{
-        Serial.println("Not SD printing");
-      }
-      break;
-    case 28: //M28 - Start SD write
-      if(sdactive){
-        char* npos = 0;
-        file.close();
-        sdmode = false;
-        starpos = (strchr(strchr_pointer + 4,'*'));
-        if(starpos != NULL){
-          npos = strchr(cmdbuffer[bufindr], 'N');
-          strchr_pointer = strchr(npos,' ') + 1;
-          *(starpos-1) = '\0';
-        }
-        if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
-        {
-          Serial.print("open failed, File: ");
-          Serial.print(strchr_pointer + 4);
-          Serial.print(".");
-        }
-        else{
-          savetosd = true;
-          Serial.print("Writing to file: ");
-          Serial.println(strchr_pointer + 4);
-        }
-      }
-      break;
-    case 29: //M29 - Stop SD write
-      //processed in write to file routine above
-      //savetosd = false;
-      break;
-		case 30:
-		{
-			stoptime=millis();
-				char time[30];
-				unsigned long t=(stoptime-starttime)/1000;
-				int sec,min;
-				min=t/60;
-				sec=t%60;
-				sprintf(time,"%i min, %i sec",min,sec);
-				Serial.println(time);
-				LCD_MESSAGE(time);
-                }
-                                break;
-#endif //SDSUPPORT
-      case 42: //M42 -Change pin status via gcode
-        if (code_seen('S'))
-        {
-          int pin_status = code_value();
-          if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
-          {
-            int pin_number = code_value();
-            for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
-            {
-              if (sensitive_pins[i] == pin_number)
-              {
-                pin_number = -1;
-                break;
-              }
-            }
-            
-            if (pin_number > -1)
-            {              
-              pinMode(pin_number, OUTPUT);
-              digitalWrite(pin_number, pin_status);
-              analogWrite(pin_number, pin_status);
-            }
-          }
-        }
-        break;
-      case 104: // M104
-                if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
-#ifdef PIDTEMP
-                pid_setpoint = code_value();
-#endif //PIDTEM
-        #ifdef WATCHPERIOD
-            if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
-                watchmillis = max(1,millis());
-                watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
-            }else{
-                watchmillis = 0;
-            }
-        #endif
-        break;
-      case 140: // M140 set bed temp
-                if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
-        break;
-      case 105: // M105
-        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
-                tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
-        #endif
-        #if TEMP_1_PIN > -1
-                bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
-        #endif
-        #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
-            Serial.print("ok T:");
-            Serial.print(tt); 
-//            Serial.print(", raw:");
-//            Serial.print(current_raw);       
-          #if TEMP_1_PIN > -1 
-#ifdef PIDTEMP
-            Serial.print(" B:");
-            #if TEMP_1_PIN > -1
-            Serial.println(bt); 
-            #else
-            Serial.println(HeaterPower); 
-            #endif
-#else
-            Serial.println();
-#endif
-          #else
-            Serial.println();
-          #endif
-        #else
-          Serial.println("No thermistors - no temp");
-        #endif
-        return;
-        //break;
-      case 109: {// M109 - Wait for extruder heater to reach target.
-            LCD_MESSAGE("Heating...");
-               if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
-            #ifdef PIDTEMP
-            pid_setpoint = code_value();
-            #endif //PIDTEM
-            #ifdef WATCHPERIOD
-          if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
-              watchmillis = max(1,millis());
-              watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
-            } else {
-              watchmillis = 0;
-            }
-            #endif //WATCHPERIOD
-            codenum = millis(); 
-     
-               /* See if we are heating up or cooling down */
-              bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
-
-            #ifdef TEMP_RESIDENCY_TIME
-            long residencyStart;
-            residencyStart = -1;
-            /* continue to loop until we have reached the target temp   
-              _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
-            while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
-                    (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
-            #else
-            while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
-            #endif //TEMP_RESIDENCY_TIME
-              if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
-                Serial.print("T:");
-              Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) ); 
-                codenum = millis();
-              }
-              manage_heater();
-              LCD_STATUS;
-              #ifdef TEMP_RESIDENCY_TIME
-               /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
-                  or when current temp falls outside the hysteresis after target temp was reached */
-              if ((residencyStart == -1 &&  target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
-                  (residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
-                  (residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
-                residencyStart = millis();
-              }
-              #endif //TEMP_RESIDENCY_TIME
-            }
-            LCD_MESSAGE("Marlin ready.");
-          }
-          break;
-      case 190: // M190 - Wait bed for heater to reach target.
-      #if TEMP_1_PIN > -1
-          if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
-        codenum = millis(); 
-          while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED]) 
-                                {
-          if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
-          {
-            float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
-            Serial.print("T:");
-            Serial.println( tt );
-            Serial.print("ok T:");
-            Serial.print( tt ); 
-            Serial.print(" B:");
-            Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) ); 
-            codenum = millis(); 
-          }
-            manage_heater();
-        }
-      #endif
-      break;
-#if FAN_PIN > -1
-      case 106: //M106 Fan On
-        if (code_seen('S')){
-            WRITE(FAN_PIN,HIGH);
-            fanpwm=constrain(code_value(),0,255);
-            analogWrite(FAN_PIN,  fanpwm);
-        }
-        else {
-          WRITE(FAN_PIN,HIGH);
-          fanpwm=255;
-          analogWrite(FAN_PIN, fanpwm);			
-        }
-        break;
-      case 107: //M107 Fan Off
-        WRITE(FAN_PIN,LOW);
-        analogWrite(FAN_PIN, 0);
-        break;
-#endif
-#if (PS_ON_PIN > -1)
-      case 80: // M80 - ATX Power On
-        SET_OUTPUT(PS_ON_PIN); //GND
-        break;
-      case 81: // M81 - ATX Power Off
-        SET_INPUT(PS_ON_PIN); //Floating
-        break;
-#endif
-    case 82:
-      axis_relative_modes[3] = false;
-      break;
-    case 83:
-      axis_relative_modes[3] = true;
-      break;
-		case 18:
-    case 84:
-      if(code_seen('S')){ 
-        stepper_inactive_time = code_value() * 1000; 
-      }
-      else{ 
-        st_synchronize(); 
-        disable_x(); 
-        disable_y(); 
-        disable_z(); 
-        disable_e(); 
-      }
-      break;
-    case 85: // M85
-      code_seen('S');
-      max_inactive_time = code_value() * 1000; 
-      break;
-    case 92: // M92
-      for(int i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
-      }
-
-      break;
-    case 115: // M115
-      Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
-      break;
-    case 114: // M114
-      Serial.print("X:");
-      Serial.print(current_position[X_AXIS]);
-      Serial.print("Y:");
-      Serial.print(current_position[Y_AXIS]);
-      Serial.print("Z:");
-      Serial.print(current_position[Z_AXIS]);
-      Serial.print("E:");      
-      Serial.print(current_position[E_AXIS]);
-      #ifdef DEBUG_STEPS
-        Serial.print(" Count X:");
-        Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
-        Serial.print("Y:");
-        Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
-        Serial.print("Z:");
-        Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
-      #endif
-      Serial.println("");
-      break;
-    case 119: // M119
-#if (X_MIN_PIN > -1)
-      Serial.print("x_min:");
-      Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (X_MAX_PIN > -1)
-      Serial.print("x_max:");
-      Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Y_MIN_PIN > -1)
-      Serial.print("y_min:");
-      Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Y_MAX_PIN > -1)
-      Serial.print("y_max:");
-      Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Z_MIN_PIN > -1)
-      Serial.print("z_min:");
-      Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-#if (Z_MAX_PIN > -1)
-      Serial.print("z_max:");
-      Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
-#endif
-      Serial.println("");
-      break;
-      //TODO: update for all axis, use for loop
-    case 201: // M201
-      for(int i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
-      }
-      break;
-#if 0 // Not used for Sprinter/grbl gen6
-    case 202: // M202
-      for(int i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
-      }
-      break;
-#endif
-    case 203: // M203 max feedrate mm/sec
-      for(int i=0; i < NUM_AXIS; i++) {
-        if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
-      }
-      break;
-    case 204: // M204 acclereration S normal moves T filmanent only moves
-      {
-        if(code_seen('S')) acceleration = code_value() ;
-        if(code_seen('T')) retract_acceleration = code_value() ;
-      }
-      break;
-      case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
-      {
-        if(code_seen('S')) minimumfeedrate = code_value()*60 ;
-        if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
-        if(code_seen('B')) minsegmenttime = code_value() ;
-        if(code_seen('X')) max_xy_jerk = code_value()*60 ;
-        if(code_seen('Z')) max_z_jerk = code_value()*60 ;
-      }
-      break;
-      case 220: // M220 S<factor in percent>- set speed factor override percentage
-      {
-        if(code_seen('S')) 
-        {
-          feedmultiply = code_value() ;
-          feedmultiplychanged=true;
-        }
-      }
-      break;
-#ifdef PIDTEMP
-    case 301: // M301
-      if(code_seen('P')) Kp = code_value();
-      if(code_seen('I')) Ki = code_value()*PID_dT;
-      if(code_seen('D')) Kd = code_value()/PID_dT;
-//      ECHOLN("Kp "<<_FLOAT(Kp,2));
-//      ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
-//      ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
-
-//      temp_iState_min = 0.0;
-//      if (Ki!=0) {
-//      temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
-//      }
-//      else       temp_iState_max = 1.0e10;
-      break;
-#endif //PIDTEMP
-      case 500: // Store settings in EEPROM
-      {
-          StoreSettings();
-      }
-      break;
-      case 501: // Read settings from EEPROM
-      {
-        RetrieveSettings();
-      }
-      break;
-      case 502: // Revert to default settings
-      {
-        RetrieveSettings(true);
-      }
-      break;
-
-    }
-  }
-  else{
-    Serial.println("Unknown command:");
-    Serial.println(cmdbuffer[bufindr]);
-  }
-
-  ClearToSend();
-}
-
-void FlushSerialRequestResend()
-{
-  //char cmdbuffer[bufindr][100]="Resend:";
-  Serial.flush();
-  Serial.print("Resend:");
-  Serial.println(gcode_LastN + 1);
-  ClearToSend();
-}
-
-void ClearToSend()
-{
-  previous_millis_cmd = millis();
-#ifdef SDSUPPORT
-  if(fromsd[bufindr])
-    return;
-#endif //SDSUPPORT
-  Serial.println("ok"); 
-}
-
-inline void get_coordinates()
-{
-  for(int i=0; i < NUM_AXIS; i++) {
-    if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
-    else destination[i] = current_position[i];                                                       //Are these else lines really needed?
-  }
-  if(code_seen('F')) {
-    next_feedrate = code_value();
-    if(next_feedrate > 0.0) feedrate = next_feedrate;
-  }
-}
-
-void prepare_move()
-{
-  plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
-  for(int i=0; i < NUM_AXIS; i++) {
-    current_position[i] = destination[i];
-  }
-}
-
-
-
-#ifdef USE_WATCHDOG
-
-#include  <avr/wdt.h>
-#include  <avr/interrupt.h>
-
-volatile uint8_t timeout_seconds=0;
-
-void(* ctrlaltdelete) (void) = 0;
-
-ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
-  if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
-  {
-   kill();
-#ifdef RESET_MANUAL
-    LCD_MESSAGE("Please Reset!");
-    ECHOLN("echo_: Something is wrong, please turn off the printer.");
-#else
-    LCD_MESSAGE("Timeout, resetting!");
-#endif 
-    //disable watchdog, it will survife reboot.
-    WDTCSR |= (1<<WDCE) | (1<<WDE);
-    WDTCSR = 0;
-#ifdef RESET_MANUAL
-    while(1); //wait for user or serial reset
-#else
-    ctrlaltdelete();
-#endif
-  }
-}
-
-/// intialise watch dog with a 1 sec interrupt time
-void wd_init() {
-  WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
-  WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )|  (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
-}
-
-/// reset watchdog. MUST be called every 1s after init or avr will reset.
-void wd_reset() {
-  wdt_reset();
-  timeout_seconds=0; //reset counter for resets
-}
-#endif /* USE_WATCHDOG */
-
-
-inline void kill()
-{
-  #if TEMP_0_PIN > -1
-  target_raw[0]=0;
-   #if HEATER_0_PIN > -1  
-     WRITE(HEATER_0_PIN,LOW);
-   #endif
-  #endif
-  #if TEMP_1_PIN > -1
-  target_raw[1]=0;
-  #if HEATER_1_PIN > -1 
-    WRITE(HEATER_1_PIN,LOW);
-  #endif
-  #endif
-  #if TEMP_2_PIN > -1
-  target_raw[2]=0;
-  #if HEATER_2_PIN > -1  
-    WRITE(HEATER_2_PIN,LOW);
-  #endif
-  #endif
-  disable_x();
-  disable_y();
-  disable_z();
-  disable_e();
-  
-  if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
-  Serial.println("!! Printer halted. kill() called!!");
-  while(1); // Wait for reset
-}
-
-void manage_inactivity(byte debug) { 
-  if( (millis()-previous_millis_cmd) >  max_inactive_time ) if(max_inactive_time) kill(); 
-  if( (millis()-previous_millis_cmd) >  stepper_inactive_time ) if(stepper_inactive_time) { 
-    disable_x(); 
-    disable_y(); 
-    disable_z(); 
-    disable_e(); 
-  }
-  check_axes_activity();
-}

diff --git a/Marlin/motion_control.cpp b/Marlin/motion_control.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..875531fb787d1349cbe68a15f91178a263d45177
--- /dev/null
+++ b/Marlin/motion_control.cpp
@@ -0,0 +1,133 @@
+/*
+  motion_control.c - high level interface for issuing motion commands
+  Part of Grbl
+
+  Copyright (c) 2009-2011 Simen Svale Skogsrud
+  Copyright (c) 2011 Sungeun K. Jeon
+  
+  Grbl is free software: you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation, either version 3 of the License, or
+  (at your option) any later version.
+
+  Grbl is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+//#include "motion_control.h"
+#include "Configuration.h"
+#include "Marlin.h"
+//#include <util/delay.h>
+//#include <math.h>
+//#include <stdlib.h>
+#include "stepper.h"
+#include "planner.h"
+
+// The arc is approximated by generating a huge number of tiny, linear segments. The length of each 
+// segment is configured in settings.mm_per_arc_segment.  
+void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1, 
+  uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise)
+{      
+//   int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
+//   plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
+  Serial.println("mc_arc");
+  float center_axis0 = position[axis_0] + offset[axis_0];
+  float center_axis1 = position[axis_1] + offset[axis_1];
+  float linear_travel = target[axis_linear] - position[axis_linear];
+  float r_axis0 = -offset[axis_0];  // Radius vector from center to current location
+  float r_axis1 = -offset[axis_1];
+  float rt_axis0 = target[axis_0] - center_axis0;
+  float rt_axis1 = target[axis_1] - center_axis1;
+  
+  // CCW angle between position and target from circle center. Only one atan2() trig computation required.
+  float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
+  if (angular_travel < 0) { angular_travel += 2*M_PI; }
+  if (isclockwise) { angular_travel -= 2*M_PI; }
+  
+  float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
+  if (millimeters_of_travel == 0.0) { return; }
+  uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
+/*  
+  // Multiply inverse feed_rate to compensate for the fact that this movement is approximated
+  // by a number of discrete segments. The inverse feed_rate should be correct for the sum of 
+  // all segments.
+  if (invert_feed_rate) { feed_rate *= segments; }
+*/
+  float theta_per_segment = angular_travel/segments;
+  float linear_per_segment = linear_travel/segments;
+  
+  /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
+     and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
+         r_T = [cos(phi) -sin(phi);
+                sin(phi)  cos(phi] * r ;
+     
+     For arc generation, the center of the circle is the axis of rotation and the radius vector is 
+     defined from the circle center to the initial position. Each line segment is formed by successive
+     vector rotations. This requires only two cos() and sin() computations to form the rotation
+     matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
+     all double numbers are single precision on the Arduino. (True double precision will not have
+     round off issues for CNC applications.) Single precision error can accumulate to be greater than
+     tool precision in some cases. Therefore, arc path correction is implemented. 
+
+     Small angle approximation may be used to reduce computation overhead further. This approximation
+     holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
+     theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
+     to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for 
+     numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
+     issue for CNC machines with the single precision Arduino calculations.
+     
+     This approximation also allows mc_arc to immediately insert a line segment into the planner 
+     without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
+     a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead. 
+     This is important when there are successive arc motions. 
+  */
+  // Vector rotation matrix values
+  float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
+  float sin_T = theta_per_segment;
+  
+  float arc_target[3];
+  float sin_Ti;
+  float cos_Ti;
+  float r_axisi;
+  uint16_t i;
+  int8_t count = 0;
+
+  // Initialize the linear axis
+  arc_target[axis_linear] = position[axis_linear];
+
+  for (i = 1; i<segments; i++) { // Increment (segments-1)
+    
+    if (count < N_ARC_CORRECTION) {
+      // Apply vector rotation matrix 
+      r_axisi = r_axis0*sin_T + r_axis1*cos_T;
+      r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
+      r_axis1 = r_axisi;
+      count++;
+    } else {
+      // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
+      // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
+      cos_Ti = cos(i*theta_per_segment);
+      sin_Ti = sin(i*theta_per_segment);
+      r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
+      r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
+      count = 0;
+    }
+
+    // Update arc_target location
+    arc_target[axis_0] = center_axis0 + r_axis0;
+    arc_target[axis_1] = center_axis1 + r_axis1;
+    arc_target[axis_linear] += linear_per_segment;
+    plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], target[E_AXIS], feed_rate);
+    
+  }
+  // Ensure last segment arrives at target location.
+  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate);
+
+//   plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
+}
+
diff --git a/Marlin/motion_control.h b/Marlin/motion_control.h
new file mode 100644
index 0000000000000000000000000000000000000000..9bcff4bf4c43a7af074d78c30c1badd83a84ad0f
--- /dev/null
+++ b/Marlin/motion_control.h
@@ -0,0 +1,32 @@
+/*
+  motion_control.h - high level interface for issuing motion commands
+  Part of Grbl
+
+  Copyright (c) 2009-2011 Simen Svale Skogsrud
+  Copyright (c) 2011 Sungeun K. Jeon
+  
+  Grbl is free software: you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation, either version 3 of the License, or
+  (at your option) any later version.
+
+  Grbl is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#ifndef motion_control_h
+#define motion_control_h
+
+// Execute an arc in offset mode format. position == current xyz, target == target xyz, 
+// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
+// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
+// for vector transformation direction.
+void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
+  unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise);
+  
+#endif